Inositol polyphosphate 5-phosphatase OCRL
From Proteopedia
(Difference between revisions)
Line 34: | Line 34: | ||
The membrane lipids phosphatidylinositol can be phosphorylated at positions 3, 4 and 5 of the inositol ring, which generates eight possible species called phosphoinositides. OCRL1 is one of the phosphatases that removes phosphate groups from specific positions of the inositol ring - OCRL1 selectively acts as a 5-phosphatase. Phosphatidylinositols together with proteins of the Rab family typically have their distinct subcellular localization, and they are both an integral part of the recognition machinery of membrane compartments, which regulates membrane trafficking between organelles. Rab GTPases regulate membrane trafficking through interactions with various effectors, one of them being the phosphatase OCRL1.<ref name="main">PMID: 21378754</ref> | The membrane lipids phosphatidylinositol can be phosphorylated at positions 3, 4 and 5 of the inositol ring, which generates eight possible species called phosphoinositides. OCRL1 is one of the phosphatases that removes phosphate groups from specific positions of the inositol ring - OCRL1 selectively acts as a 5-phosphatase. Phosphatidylinositols together with proteins of the Rab family typically have their distinct subcellular localization, and they are both an integral part of the recognition machinery of membrane compartments, which regulates membrane trafficking between organelles. Rab GTPases regulate membrane trafficking through interactions with various effectors, one of them being the phosphatase OCRL1.<ref name="main">PMID: 21378754</ref> | ||
- | OCRL1 shows multiple binding sites for clathrin coat components (clathrin heavy chain and AP2 clathrin adaptor) so it seems to have a role in clathrin-mediated endocytosis. The two motifs involved in clathrin binding are located in the PH and Rho-GAP-like domains.<ref name="role"/> The 8 AA insertion in the longer isoform A enhances the interaction with clathrin.<ref name="isoform">PMID: 19211563</ref> It is recruited to clathrin‐coated pits at the later stages of the vesicle formation process. | + | OCRL1 shows multiple binding sites for clathrin coat components (clathrin heavy chain and AP2 clathrin adaptor) so it seems to have a role in clathrin-mediated endocytosis. The two motifs involved in clathrin binding are located in the PH and Rho-GAP-like domains.<ref name="role"/> The 8 AA insertion in the longer isoform A enhances the interaction with clathrin.<ref name="isoform">PMID: 19211563</ref> It is recruited to clathrin‐coated pits at the later stages of the vesicle formation process.<ref>PMID: 26351914</ref> |
OCRL1 phosphatase activity prevents ectopic accumulation of PtdIns(4,5)P2 (and possibly PtdIns(3,4,5)P3) on intracellular membrane. This helps maintaining phosphoinositide spatial segregation and homeostasis within the cell.<ref name="role"/> | OCRL1 phosphatase activity prevents ectopic accumulation of PtdIns(4,5)P2 (and possibly PtdIns(3,4,5)P3) on intracellular membrane. This helps maintaining phosphoinositide spatial segregation and homeostasis within the cell.<ref name="role"/> |
Revision as of 08:13, 28 April 2021
OCRL-1 mutations causing Lowe syndrome
|
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Lewis RA, Nussbaum RL, Brewer ED. Lowe Syndrome PMID:20301653
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Bokenkamp A, Ludwig M. The oculocerebrorenal syndrome of Lowe: an update. Pediatr Nephrol. 2016 Dec;31(12):2201-2212. doi: 10.1007/s00467-016-3343-3. Epub , 2016 Mar 24. PMID:27011217 doi:http://dx.doi.org/10.1007/s00467-016-3343-3
- ↑ 3.0 3.1 3.2 Kenworthy L, Charnas L. Evidence for a discrete behavioral phenotype in the oculocerebrorenal syndrome of Lowe. Am J Med Genet. 1995 Nov 20;59(3):283-90. doi: 10.1002/ajmg.1320590304. PMID:8599350 doi:http://dx.doi.org/10.1002/ajmg.1320590304
- ↑ Mao Y, Balkin DM, Zoncu R, Erdmann KS, Tomasini L, Hu F, Jin MM, Hodsdon ME, De Camilli P. A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J. 2009 Jul 8;28(13):1831-42. Epub 2009 Jun 18. PMID:19536138 doi:10.1038/emboj.2009.155
- ↑ Lowe M. Structure and function of the Lowe syndrome protein OCRL1. Traffic. 2005 Sep;6(9):711-9. doi: 10.1111/j.1600-0854.2005.00311.x. PMID:16101675 doi:http://dx.doi.org/10.1111/j.1600-0854.2005.00311.x
- ↑ Pirruccello M, De Camilli P. Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL. Trends Biochem Sci. 2012 Apr;37(4):134-43. doi: 10.1016/j.tibs.2012.01.002. Epub , 2012 Feb 28. PMID:22381590 doi:http://dx.doi.org/10.1016/j.tibs.2012.01.002
- ↑ Perdomo-Ramirez A, Anton-Gamero M, Rizzo DS, Trindade A, Ramos-Trujillo E, Claverie-Martin F. Two new missense mutations in the protein interaction ASH domain of OCRL1 identified in patients with Lowe syndrome. Intractable Rare Dis Res. 2020 Nov;9(4):222-228. doi: 10.5582/irdr.2020.03092. PMID:33139981 doi:http://dx.doi.org/10.5582/irdr.2020.03092
- ↑ 8.0 8.1 8.2 8.3 Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell. 2007 Sep;13(3):377-90. PMID:17765681 doi:http://dx.doi.org/10.1016/j.devcel.2007.08.004
- ↑ De Matteis MA, Staiano L, Emma F, Devuyst O. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat Rev Nephrol. 2017 Aug;13(8):455-470. doi: 10.1038/nrneph.2017.83. Epub 2017, Jul 3. PMID:28669993 doi:http://dx.doi.org/10.1038/nrneph.2017.83
- ↑ 10.0 10.1 10.2 10.3 Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A. A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J. 2011 Mar 4. PMID:21378754 doi:10.1038/emboj.2011.60
- ↑ Choudhury R, Noakes CJ, McKenzie E, Kox C, Lowe M. Differential clathrin binding and subcellular localization of OCRL1 splice isoforms. J Biol Chem. 2009 Apr 10;284(15):9965-73. doi: 10.1074/jbc.M807442200. Epub 2009 , Feb 11. PMID:19211563 doi:http://dx.doi.org/10.1074/jbc.M807442200
- ↑ Sharma S, Skowronek A, Erdmann KS. The role of the Lowe syndrome protein OCRL in the endocytic pathway. Biol Chem. 2015 Dec;396(12):1293-300. doi: 10.1515/hsz-2015-0180. PMID:26351914 doi:http://dx.doi.org/10.1515/hsz-2015-0180
- ↑ Coon BG, Hernandez V, Madhivanan K, Mukherjee D, Hanna CB, Barinaga-Rementeria Ramirez I, Lowe M, Beales PL, Aguilar RC. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly. Hum Mol Genet. 2012 Apr 15;21(8):1835-47. doi: 10.1093/hmg/ddr615. Epub 2012 Jan , 6. PMID:22228094 doi:10.1093/hmg/ddr615
- ↑ 14.0 14.1 14.2 Acosta-Tapia N, Galindo JF, Baldiris R. Insights into the Effect of Lowe Syndrome-Causing Mutation p.Asn591Lys of OCRL-1 through Protein-Protein Interaction Networks and Molecular Dynamics Simulations. J Chem Inf Model. 2020 Feb 24;60(2):1019-1027. doi: 10.1021/acs.jcim.9b01077., Epub 2020 Jan 30. PMID:31967472 doi:http://dx.doi.org/10.1021/acs.jcim.9b01077
- ↑ Ye Q, Shen Q, Rao J, Zhang A, Zheng B, Liu X, Shen Y, Chen Z, Wu Y, Hou L, Jian S, Wei M, Ma M, Sun S, Li Q, Dang X, Wang Y, Xu H, Mao J. Multicenter study of the clinical features and mutation gene spectrum of Chinese children with Dent disease. Clin Genet. 2020 Mar;97(3):407-417. doi: 10.1111/cge.13663. Epub 2020 Jan 13. PMID:31674016 doi:http://dx.doi.org/10.1111/cge.13663
- ↑ Pirruccello M, Swan LE, Folta-Stogniew E, De Camilli P. Recognition of the F&H motif by the Lowe syndrome protein OCRL. Nat Struct Mol Biol. 2011 Jun 12. doi: 10.1038/nsmb.2071. PMID:21666675 doi:10.1038/nsmb.2071
- ↑ Gianesello L, Del Prete D, Anglani F, Calo LA. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon. Hum Genet. 2021 Mar;140(3):401-421. doi: 10.1007/s00439-020-02219-2. Epub 2020, Aug 29. PMID:32860533 doi:http://dx.doi.org/10.1007/s00439-020-02219-2
- ↑ Hichri H, Rendu J, Monnier N, Coutton C, Dorseuil O, Poussou RV, Baujat G, Blanchard A, Nobili F, Ranchin B, Remesy M, Salomon R, Satre V, Lunardi J. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat. 2011 Apr;32(4):379-88. doi: 10.1002/humu.21391. Epub 2011 Mar 10. PMID:21031565 doi:10.1002/humu.21391