|
|
Line 3: |
Line 3: |
| <StructureSection load='2q4d' size='340' side='right'caption='[[2q4d]], [[Resolution|resolution]] 2.15Å' scene=''> | | <StructureSection load='2q4d' size='340' side='right'caption='[[2q4d]], [[Resolution|resolution]] 2.15Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2q4d]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q4D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q4D FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2q4d]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q4D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q4D FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.152Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ydh|1ydh]], [[2a33|2a33]]</div></td></tr>
| + | |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">AT5G11950, F14F18.120 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q4d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q4d OCA], [https://pdbe.org/2q4d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q4d RCSB], [https://www.ebi.ac.uk/pdbsum/2q4d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q4d ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q4d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q4d OCA], [https://pdbe.org/2q4d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q4d RCSB], [https://www.ebi.ac.uk/pdbsum/2q4d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q4d ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/LOG8_ARATH LOG8_ARATH]] Cytokinin-activating enzyme working in the direct activation pathway. Phosphoribohydrolase that converts inactive cytokinin nucleotides to the biologically active free-base forms.<ref>PMID:19837870</ref>
| + | [https://www.uniprot.org/uniprot/LOG8_ARATH LOG8_ARATH] Cytokinin-activating enzyme working in the direct activation pathway. Phosphoribohydrolase that converts inactive cytokinin nucleotides to the biologically active free-base forms.<ref>PMID:19837870</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Arath]] | + | [[Category: Arabidopsis thaliana]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Structural genomic]]
| + | [[Category: Kondrashov DA]] |
- | [[Category: Kondrashov, D A]] | + | [[Category: Levin EJ]] |
- | [[Category: Levin, E J]] | + | [[Category: Phillips Jr GN]] |
- | [[Category: Phillips, G N]] | + | [[Category: Wesenberg GE]] |
- | [[Category: Wesenberg, G E]] | + | |
- | [[Category: At5g11950]]
| + | |
- | [[Category: Cesg]]
| + | |
- | [[Category: Ensemble refinement]]
| + | |
- | [[Category: Lysine decarboxylase-like protein]]
| + | |
- | [[Category: PSI, Protein structure initiative]]
| + | |
- | [[Category: Refinement methodology development]]
| + | |
- | [[Category: Unknown function]]
| + | |
| Structural highlights
Function
LOG8_ARATH Cytokinin-activating enzyme working in the direct activation pathway. Phosphoribohydrolase that converts inactive cytokinin nucleotides to the biologically active free-base forms.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
X-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction data, and we find that ensemble refinement produces better representations of the distributions of atomic positions in the simulated structures than single-conformer refinements. Comparison of principal components calculated from the refined ensembles and simulations shows that concerted motions are captured locally, but that correlations dissipate over long distances. Ensemble refinement is also used on 50 experimental structures of varying resolution and leads to decreases in R(free) values, implying that improvements in the representation of flexibility observed for the simulated structures may apply to real structures. These gains are essentially independent of resolution or data-to-parameter ratio, suggesting that even structures at moderate resolution can benefit from ensemble refinement.
Ensemble refinement of protein crystal structures: validation and application.,Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN Jr Structure. 2007 Sep;15(9):1040-52. PMID:17850744[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell. 2009 Oct;21(10):3152-69. doi: 10.1105/tpc.109.068676. Epub 2009 Oct, 16. PMID:19837870 doi:http://dx.doi.org/10.1105/tpc.109.068676
- ↑ Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN Jr. Ensemble refinement of protein crystal structures: validation and application. Structure. 2007 Sep;15(9):1040-52. PMID:17850744 doi:http://dx.doi.org/10.1016/j.str.2007.06.019
|