|
|
Line 3: |
Line 3: |
| <StructureSection load='2qno' size='340' side='right'caption='[[2qno]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='2qno' size='340' side='right'caption='[[2qno]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2qno]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_35319 Atcc 35319]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QNO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2QNO FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2qno]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Ruminiclostridium_cellulolyticum Ruminiclostridium cellulolyticum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QNO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2QNO FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SGC:4-DEOXY-4-THIO-BETA-D-GLUCOPYRANOSE'>SGC</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1g9g|1g9g]], [[1g9j|1g9j]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SGC:4-DEOXY-4-THIO-BETA-D-GLUCOPYRANOSE'>SGC</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">celCCF ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1521 ATCC 35319])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] </span></td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2qno FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qno OCA], [https://pdbe.org/2qno PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2qno RCSB], [https://www.ebi.ac.uk/pdbsum/2qno PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2qno ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2qno FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qno OCA], [https://pdbe.org/2qno PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2qno RCSB], [https://www.ebi.ac.uk/pdbsum/2qno PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2qno ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/GUNF_CLOCE GUNF_CLOCE]] Probable endoglucanase involved in the degradation of cellulose or related beta-glucans.
| + | [https://www.uniprot.org/uniprot/GUNF_RUMCH GUNF_RUMCH] Probable endoglucanase involved in the degradation of cellulose or related beta-glucans. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 35319]] | |
- | [[Category: Cellulase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Haser, R]] | + | [[Category: Ruminiclostridium cellulolyticum]] |
- | [[Category: Parsiegla, G]] | + | [[Category: Haser R]] |
- | [[Category: Alpha-alpha-six barrel]] | + | [[Category: Parsiegla G]] |
- | [[Category: Carbohydrate metabolism]]
| + | |
- | [[Category: Cellulose degradation]]
| + | |
- | [[Category: Gh family 48]]
| + | |
- | [[Category: Glycosidase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Inactive mutant]]
| + | |
- | [[Category: Polysaccharide degradation]]
| + | |
- | [[Category: Thio-oligosaccharide complex]]
| + | |
| Structural highlights
Function
GUNF_RUMCH Probable endoglucanase involved in the degradation of cellulose or related beta-glucans.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
An efficient breakdown of lignocellulosic biomass is a prerequisite for the production of second-generation biofuels. Cellulases are key enzymes in this process. We crystallized complexes between hemithio-cello-deca and dodecaoses and the inactive mutants E44Q and E55Q of the endo-processive cellulase Cel48F, one of the most abundant cellulases in cellulosomes from Clostridium cellulolyticum, to elucidate its processive mechanism. In both complexes, the cellooligosaccharides occupy similar positions in the tunnel part of the active site but are more or less buried into the cleft, which hosts the active site. In the E44Q complex, it proceeds along the upper part of the cavity, while it occupies in the E55Q complex the same productive binding subsites in the lower part of the cavity that have previously been reported in Cel48F/cellooligosaccharide complexes. In both cases, the sugar moieties are stabilized by stacking interactions with aromatic side chains and H bonds. The upper pathway is gated by Tyr403, which blocks its access in the E55Q complex and offers a new stacking interaction in the E44Q complex. The new structural data give rise to the hypothesis of a two-step mechanism in which processive action and chain disruption occupy different subsites at the end of their trajectory. In the first part of the mechanism, the chain may smoothly slide up to the leaving group site along the upper pathway, while in the second part, the chain is cleaved in the already described productive binding position located in the lower pathway. The solved native structure of Cel48F without any bound sugar in the active site confirms the two side-chain orientations of the proton donor Glu55 as observed in the complex structures.
Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action.,Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R J Mol Biol. 2008 Jan 11;375(2):499-510. Epub 2007 Oct 22. PMID:18035374[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R. Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J Mol Biol. 2008 Jan 11;375(2):499-510. Epub 2007 Oct 22. PMID:18035374 doi:10.1016/j.jmb.2007.10.039
|