1e0o
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1e0o' size='340' side='right'caption='[[1e0o]], [[Resolution|resolution]] 2.80Å' scene=''> | <StructureSection load='1e0o' size='340' side='right'caption='[[1e0o]], [[Resolution|resolution]] 2.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1e0o]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[1e0o]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E0O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1E0O FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IDS:2-O-SULFO-ALPHA-L-IDOPYRANURONIC+ACID'>IDS</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=SGN:N,O6-DISULFO-GLUCOSAMINE'>SGN</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1e0o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e0o OCA], [https://pdbe.org/1e0o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1e0o RCSB], [https://www.ebi.ac.uk/pdbsum/1e0o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1e0o ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1e0o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e0o OCA], [https://pdbe.org/1e0o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1e0o RCSB], [https://www.ebi.ac.uk/pdbsum/1e0o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1e0o ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == Disease == | ||
- | [[https://www.uniprot.org/uniprot/FGFR2_HUMAN FGFR2_HUMAN]] Defects in FGFR2 are the cause of Crouzon syndrome (CS) [MIM:[https://omim.org/entry/123500 123500]]; also called craniofacial dysostosis type I (CFD1). CS is an autosomal dominant syndrome characterized by craniosynostosis (premature fusion of the skull sutures), hypertelorism, exophthalmos and external strabismus, parrot-beaked nose, short upper lip, hypoplastic maxilla, and a relative mandibular prognathism.<ref>PMID:19387476</ref> <ref>PMID:17803937</ref> [:]<ref>PMID:7581378</ref> <ref>PMID:7987400</ref> <ref>PMID:7874170</ref> <ref>PMID:7655462</ref> <ref>PMID:8528214</ref> <ref>PMID:8644708</ref> <ref>PMID:8946174</ref> <ref>PMID:8956050</ref> <ref>PMID:9002682</ref> <ref>PMID:9152842</ref> <ref>PMID:9677057</ref> <ref>PMID:9521581</ref> <ref>PMID:10574673</ref> <ref>PMID:11173845</ref> <ref>PMID:11380921</ref> <ref>PMID:11781872</ref> Defects in FGFR2 are a cause of Jackson-Weiss syndrome (JWS) [MIM:[https://omim.org/entry/123150 123150]]. JWS is an autosomal dominant craniosynostosis syndrome characterized by craniofacial abnormalities and abnormality of the feet: broad great toes with medial deviation and tarsal-metatarsal coalescence.<ref>PMID:19387476</ref> <ref>PMID:7874170</ref> <ref>PMID:8528214</ref> <ref>PMID:8644708</ref> <ref>PMID:9677057</ref> <ref>PMID:9385368</ref> Defects in FGFR2 are a cause of Apert syndrome (APRS) [MIM:[https://omim.org/entry/101200 101200]]; also known as acrocephalosyndactyly type 1 (ACS1). APRS is a syndrome characterized by facio-cranio-synostosis, osseous and membranous syndactyly of the four extremities, and midface hypoplasia. The craniosynostosis is bicoronal and results in acrocephaly of brachysphenocephalic type. Syndactyly of the fingers and toes may be total (mitten hands and sock feet) or partial affecting the second, third, and fourth digits. Intellectual deficit is frequent and often severe, usually being associated with cerebral malformations.<ref>PMID:15190072</ref> <ref>PMID:19387476</ref> <ref>PMID:9002682</ref> <ref>PMID:9677057</ref> <ref>PMID:11781872</ref> <ref>PMID:7668257</ref> <ref>PMID:11390973</ref> <ref>PMID:7719344</ref> <ref>PMID:9452027</ref> Defects in FGFR2 are a cause of Pfeiffer syndrome (PS) [MIM:[https://omim.org/entry/101600 101600]]; also known as acrocephalosyndactyly type V (ACS5). PS is characterized by craniosynostosis (premature fusion of the skull sutures) with deviation and enlargement of the thumbs and great toes, brachymesophalangy, with phalangeal ankylosis and a varying degree of soft tissue syndactyly. Three subtypes of Pfeiffer syndrome have been described: mild autosomal dominant form (type 1); cloverleaf skull, elbow ankylosis, early death, sporadic (type 2); craniosynostosis, early demise, sporadic (type 3).<ref>PMID:16844695</ref> <ref>PMID:19387476</ref> <ref>PMID:17803937</ref> <ref>PMID:8644708</ref> <ref>PMID:9002682</ref> <ref>PMID:11173845</ref> <ref>PMID:11781872</ref> <ref>PMID:7719333</ref> <ref>PMID:7719345</ref> <ref>PMID:9150725</ref> <ref>PMID:9693549</ref> <ref>PMID:9719378</ref> <ref>PMID:10394936</ref> <ref>PMID:10945669</ref> Defects in FGFR2 are the cause of Beare-Stevenson cutis gyrata syndrome (BSCGS) [MIM:[https://omim.org/entry/123790 123790]]. BSCGS is an autosomal dominant condition is characterized by the furrowed skin disorder of cutis gyrata, acanthosis nigricans, craniosynostosis, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities and early death.<ref>PMID:19387476</ref> <ref>PMID:8696350</ref> <ref>PMID:12000365</ref> Defects in FGFR2 are the cause of familial scaphocephaly syndrome (FSPC) [MIM:[https://omim.org/entry/609579 609579]]; also known as scaphocephaly with maxillary retrusion and mental retardation. FSPC is an autosomal dominant craniosynostosis syndrome characterized by scaphocephaly, macrocephaly, hypertelorism, maxillary retrusion, and mild intellectual disability. Scaphocephaly is the most common of the craniosynostosis conditions and is characterized by a long, narrow head. It is due to premature fusion of the sagittal suture or from external deformation.<ref>PMID:19387476</ref> <ref>PMID:17803937</ref> <ref>PMID:16061565</ref> Defects in FGFR2 are a cause of lacrimo-auriculo-dento-digital syndrome (LADDS) [MIM:[https://omim.org/entry/149730 149730]]; also known as Levy-Hollister syndrome. LADDS is a form of ectodermal dysplasia, a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. LADDS is an autosomal dominant syndrome characterized by aplastic/hypoplastic lacrimal and salivary glands and ducts, cup-shaped ears, hearing loss, hypodontia and enamel hypoplasia, and distal limb segments anomalies. In addition to these cardinal features, facial dysmorphism, malformations of the kidney and respiratory system and abnormal genitalia have been reported. Craniosynostosis and severe syndactyly are not observed.<ref>PMID:19387476</ref> <ref>PMID:18056630</ref> <ref>PMID:16501574</ref> Defects in FGFR2 are the cause of Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis (ABS2) [MIM:[https://omim.org/entry/207410 207410]]. A rare syndrome characterized by craniosynostosis, radiohumeral synostosis present from the perinatal period, midface hypoplasia, choanal stenosis or atresia, femoral bowing and multiple joint contractures. Arachnodactyly and/or camptodactyly have also been reported.<ref>PMID:19387476</ref> <ref>PMID:10633130</ref> Defects in FGFR2 are the cause of Bent bone dysplasia syndrome (BBDS) [MIM:[https://omim.org/entry/614592 614592]]. BBDS is a perinatal lethal skeletal dysplasia characterized by poor mineralization of the calvarium, craniosynostosis, dysmorphic facial features, prenatal teeth, hypoplastic pubis and clavicles, osteopenia, and bent long bones. Dysmorphic facial features included low-set ears, hypertelorism, midface hypoplasia, prematurely erupted fetal teeth, and micrognathia.<ref>PMID:19387476</ref> <ref>PMID:22387015</ref> | ||
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/FGF1_HUMAN FGF1_HUMAN] Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.<ref>PMID:8663044</ref> <ref>PMID:16597617</ref> <ref>PMID:20145243</ref> | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 22: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1e0o ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1e0o ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Fibroblast growth factors (FGFs) are a large family of structurally related proteins with a wide range of physiological and pathological activities. Signal transduction requires association of FGF with its receptor tyrosine kinase (FGFR) and heparan sulphate proteoglycan in a specific complex on the cell surface. Direct involvement of the heparan sulphate glycosaminoglycan polysaccharide in the molecular association between FGF and its receptor is essential for biological activity. Although crystal structures of binary complexes of FGF-heparin and FGF-FGFR have been described, the molecular architecture of the FGF signalling complex has not been elucidated. Here we report the crystal structure of the FGFR2 ectodomain in a dimeric form that is induced by simultaneous binding to FGF1 and a heparin decasaccharide. The complex is assembled around a central heparin molecule linking two FGF1 ligands into a dimer that bridges between two receptor chains. The asymmetric heparin binding involves contacts with both FGF1 molecules but only one receptor chain. The structure of the FGF1-FGFR2-heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling. | ||
- | |||
- | Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin.,Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL Nature. 2000 Oct 26;407(6807):1029-34. PMID:11069186<ref>PMID:11069186</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1e0o" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Line 39: | Line 28: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Homo sapiens]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Blundell | + | [[Category: Blundell TL]] |
- | [[Category: Burke | + | [[Category: Burke DF]] |
- | + | [[Category: Mulloy B]] | |
- | [[Category: Mulloy | + | [[Category: Pellegrini L]] |
- | [[Category: Pellegrini | + | [[Category: Von Delft F]] |
- | [[Category: | + | |
- | + | ||
- | + | ||
- | + | ||
- | + |
Revision as of 09:56, 20 March 2024
CRYSTAL STRUCTURE OF A TERNARY FGF1-FGFR2-HEPARIN COMPLEX
|