|
|
Line 3: |
Line 3: |
| <StructureSection load='1ey3' size='340' side='right'caption='[[1ey3]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='1ey3' size='340' side='right'caption='[[1ey3]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1ey3]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EY3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1EY3 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1ey3]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EY3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1EY3 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DAK:4-(N,N-DIMETHYLAMINO)CINNAMOYL-COA'>DAK</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Enoyl-CoA_hydratase Enoyl-CoA hydratase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.17 4.2.1.17] </span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DAK:4-(N,N-DIMETHYLAMINO)CINNAMOYL-COA'>DAK</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ey3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ey3 OCA], [https://pdbe.org/1ey3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ey3 RCSB], [https://www.ebi.ac.uk/pdbsum/1ey3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ey3 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ey3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ey3 OCA], [https://pdbe.org/1ey3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ey3 RCSB], [https://www.ebi.ac.uk/pdbsum/1ey3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ey3 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/ECHM_RAT ECHM_RAT]] Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate.
| + | [https://www.uniprot.org/uniprot/ECHM_RAT ECHM_RAT] Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Buffalo rat]] | |
- | [[Category: Enoyl-CoA hydratase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Anderson, V E]] | + | [[Category: Rattus norvegicus]] |
- | [[Category: Bahnson, B J]] | + | [[Category: Anderson VE]] |
- | [[Category: Petsko, G A]] | + | [[Category: Bahnson BJ]] |
- | [[Category: Beta-elimination]] | + | [[Category: Petsko GA]] |
- | [[Category: Beta-oxidation]]
| + | |
- | [[Category: Concerted reaction]]
| + | |
- | [[Category: Crotonase]]
| + | |
- | [[Category: Enoyl-coa hydratase]]
| + | |
- | [[Category: Fatty acid metabolism]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Syn-addition]]
| + | |
| Structural highlights
Function
ECHM_RAT Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
We have determined the crystal structure of the enzyme enoyl-CoA hydratase (ECH) from rat liver with the bound substrate 4-(N,N-dimethylamino)cinnamoyl-CoA using X-ray diffraction data to a resolution of 2.3 A. In addition to the thiolester substrate, the catalytic water, which is added in the hydration reaction, has been modeled into well-defined electron density in each of the six active sites of the physiological hexamer within the crystallographic asymmetric unit. The catalytic water bridges Glu(144) and Glu(164) of the enzyme and has a lone pair of electrons poised to react with C(3) of the enzyme-bound alpha,beta-unsaturated thiolester. The water molecule, which bridges two glutamate residues, is reminiscent of the enolase active site. However, unlike enolase, which has a lysine available to donate a proton, there are no other sources of protons available from other active site residues in ECH. Furthermore, an analysis of the hydrogen-bonding network of the active site suggests that both Glu(144) and Glu(164) are ionized and carry a negative charge with no reasonable place to have a protonated carboxylate. This lack of hydrogen-bonding acceptors that could accommodate a source of a proton, other than from the water molecule, leads to a hypothesis that the three atoms from a single water molecule are added across the double bond to form the hydrated product. The structural results are discussed in connection with details of the mechanism, which have been elucidated from kinetics, site-directed mutagenesis, and spectroscopy of enzyme-substrate species, in presenting an atomic-resolution mechanism of the reaction. Contrary to the previous interpretation, the structure of the E-S complex together with previously determined kinetic isotope effects is consistent with either a concerted mechanism or an E1cb stepwise mechanism.
Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion.,Bahnson BJ, Anderson VE, Petsko GA Biochemistry. 2002 Feb 26;41(8):2621-9. PMID:11851409[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bahnson BJ, Anderson VE, Petsko GA. Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry. 2002 Feb 26;41(8):2621-9. PMID:11851409
|