|
|
Line 3: |
Line 3: |
| <StructureSection load='1h38' size='340' side='right'caption='[[1h38]], [[Resolution|resolution]] 2.90Å' scene=''> | | <StructureSection load='1h38' size='340' side='right'caption='[[1h38]], [[Resolution|resolution]] 2.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1h38]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Bpt7 Bpt7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1H38 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1H38 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1h38]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_phage_T7 Escherichia phage T7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1H38 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1H38 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1aro|1aro]], [[1cez|1cez]], [[1qln|1qln]], [[4rnp|4rnp]]</div></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1h38 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1h38 OCA], [https://pdbe.org/1h38 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1h38 RCSB], [https://www.ebi.ac.uk/pdbsum/1h38 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1h38 ProSAT], [https://www.topsan.org/Proteins/RSGI/1h38 TOPSAN]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1h38 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1h38 OCA], [https://pdbe.org/1h38 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1h38 RCSB], [https://www.ebi.ac.uk/pdbsum/1h38 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1h38 ProSAT], [https://www.topsan.org/Proteins/RSGI/1h38 TOPSAN]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/RPOL_BPT7 RPOL_BPT7]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Responsible for the transcription of the late genes of T7. It is rifampicin-resistant. It recognizes a specific promoter sequence, unwinds the double-stranded RNA to expose the coding strand for templating, initiates transcription preferentially with a purine.
| + | [https://www.uniprot.org/uniprot/RPOL_BPT7 RPOL_BPT7] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Responsible for the transcription of the late genes of T7. It is rifampicin-resistant. It recognizes a specific promoter sequence, unwinds the double-stranded RNA to expose the coding strand for templating, initiates transcription preferentially with a purine. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 36: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bpt7]] | + | [[Category: Escherichia phage T7]] |
- | [[Category: DNA-directed RNA polymerase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Anikin, M]] | + | [[Category: Anikin M]] |
- | [[Category: McAllister, W T]] | + | [[Category: McAllister WT]] |
- | [[Category: Patlan, V]] | + | [[Category: Patlan V]] |
- | [[Category: Tahirov, T H]] | + | [[Category: Tahirov TH]] |
- | [[Category: Temyakov, D]] | + | [[Category: Temyakov D]] |
- | [[Category: Vassylyev, D G]] | + | [[Category: Vassylyev DG]] |
- | [[Category: Yokoyama, S]] | + | [[Category: Yokoyama S]] |
- | [[Category: Elongation complex]]
| + | |
- | [[Category: Protein/dna/rna]]
| + | |
- | [[Category: Structural genomic]]
| + | |
- | [[Category: Rna polymerase]]
| + | |
- | [[Category: Rsgi]]
| + | |
- | [[Category: T7 rna polymerase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
RPOL_BPT7 DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Responsible for the transcription of the late genes of T7. It is rifampicin-resistant. It recognizes a specific promoter sequence, unwinds the double-stranded RNA to expose the coding strand for templating, initiates transcription preferentially with a purine.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA-DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130 degrees rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA-DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.
Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution.,Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S Nature. 2002 Nov 7;420(6911):43-50. Epub 2002 Oct 9. PMID:12422209[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature. 2002 Nov 7;420(6911):43-50. Epub 2002 Oct 9. PMID:12422209 doi:10.1038/nature01129
|