|
|
Line 3: |
Line 3: |
| <StructureSection load='1o8s' size='340' side='right'caption='[[1o8s]], [[Resolution|resolution]] 1.15Å' scene=''> | | <StructureSection load='1o8s' size='340' side='right'caption='[[1o8s]], [[Resolution|resolution]] 1.15Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1o8s]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_35414 Atcc 35414]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1O8S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1O8S FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1o8s]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoclostridium_stercorarium Thermoclostridium stercorarium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1O8S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1O8S FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.15Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1o8p|1o8p]], [[1od3|1od3]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=PRD_900005:beta-cellobiose'>PRD_900005</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Endo-1,4-beta-xylanase Endo-1,4-beta-xylanase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.8 3.2.1.8] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1o8s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1o8s OCA], [https://pdbe.org/1o8s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1o8s RCSB], [https://www.ebi.ac.uk/pdbsum/1o8s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1o8s ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1o8s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1o8s OCA], [https://pdbe.org/1o8s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1o8s RCSB], [https://www.ebi.ac.uk/pdbsum/1o8s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1o8s ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/XYNA1_THEST XYNA1_THEST] Endoxylanase that degrades arabinoxylan and glucuronoxylan to xylobiose and xylotriose (in vitro).<ref>PMID:11849546</ref> <ref>PMID:15256568</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 35414]] | |
- | [[Category: Endo-1,4-beta-xylanase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Boraston, A B]] | + | [[Category: Thermoclostridium stercorarium]] |
- | [[Category: Davies, G J]] | + | [[Category: Boraston AB]] |
- | [[Category: Kilbrun, D G]] | + | [[Category: Davies GJ]] |
- | [[Category: Notenboom, V]] | + | [[Category: Kilbrun DG]] |
- | [[Category: Rose, D R]] | + | [[Category: Notenboom V]] |
- | [[Category: Warren, R A.J]] | + | [[Category: Rose DR]] |
- | [[Category: Beta- sandwich]]
| + | [[Category: Warren RAJ]] |
- | [[Category: Carbohydrate-binding module]]
| + | |
- | [[Category: Cellulose]]
| + | |
- | [[Category: Glycosidase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Xylan]]
| + | |
- | [[Category: Xylan degradation]]
| + | |
| Structural highlights
Function
XYNA1_THEST Endoxylanase that degrades arabinoxylan and glucuronoxylan to xylobiose and xylotriose (in vitro).[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Carbohydrate-binding polypeptides, including carbohydrate-binding modules (CBMs) from polysaccharidases, and lectins, are widespread in nature. Whilst CBMs are classically considered distinct from lectins, in that they are found appended to polysaccharide-degrading enzymes, this distinction is blurring. The crystal structure of CsCBM6-3, a "sequence-family 6" CBM in a xylanase from Clostridium stercorarium, at 2.3 A reveals a similar, all beta-sheet fold to that from MvX56, a module found in a family 33 glycoside hydrolase sialidase from Micromonospora viridifaciens, and the lectin AAA from Anguilla anguilla. Sequence analysis leads to the classification of MvX56 and AAA into a family distinct from that containing CsCBM6-3. Whilst these polypeptides are similar in structure they have quite different carbohydrate-binding specificities. AAA is known to bind fucose; CsCBM6-3 binds cellulose, xylan and other beta-glucans. Here we demonstrate that MvX56 binds galactose, lactose and sialic acid. Crystal structures of CsCBM6-3 in complex with xylotriose, cellobiose, and laminaribiose, 2.0 A, 1.35 A, and 1.0 A resolution, respectively, reveal that the binding site of CsCBM6-3 resides on the same polypeptide face as for MvX56 and AAA. Subtle differences in the ligand-binding surface give rise to the different specificities and biological activities, further blurring the distinction between classical lectins and CBMs.
Structure and ligand binding of carbohydrate-binding module CsCBM6-3 reveals similarities with fucose-specific lectins and "galactose-binding" domains.,Boraston AB, Notenboom V, Warren RA, Kilburn DG, Rose DR, Davies G J Mol Biol. 2003 Mar 28;327(3):659-69. PMID:12634060[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Boraston AB, McLean BW, Chen G, Li A, Warren RA, Kilburn DG. Co-operative binding of triplicate carbohydrate-binding modules from a thermophilic xylanase. Mol Microbiol. 2002 Jan;43(1):187-94. PMID:11849546 doi:10.1046/j.1365-2958.2002.02730.x
- ↑ Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology (Reading). 2004 Jul;150(Pt 7):2257-2266. PMID:15256568 doi:10.1099/mic.0.27066-0
- ↑ Boraston AB, Notenboom V, Warren RA, Kilburn DG, Rose DR, Davies G. Structure and ligand binding of carbohydrate-binding module CsCBM6-3 reveals similarities with fucose-specific lectins and "galactose-binding" domains. J Mol Biol. 2003 Mar 28;327(3):659-69. PMID:12634060
|