1pcg

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (05:54, 17 April 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='1pcg' size='340' side='right'caption='[[1pcg]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
<StructureSection load='1pcg' size='340' side='right'caption='[[1pcg]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1pcg]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PCG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PCG FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1pcg]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PCG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PCG FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EST:ESTRADIOL'>EST</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7&#8491;</td></tr>
-
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=DCY:D-CYSTEINE'>DCY</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DCY:D-CYSTEINE'>DCY</scene>, <scene name='pdbligand=EST:ESTRADIOL'>EST</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pcg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pcg OCA], [https://pdbe.org/1pcg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pcg RCSB], [https://www.ebi.ac.uk/pdbsum/1pcg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pcg ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pcg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pcg OCA], [https://pdbe.org/1pcg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pcg RCSB], [https://www.ebi.ac.uk/pdbsum/1pcg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pcg ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/ESR1_HUMAN ESR1_HUMAN]] Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Isoform 3 can bind to ERE and inhibit isoform 1.<ref>PMID:7651415</ref> <ref>PMID:10970861</ref> <ref>PMID:9328340</ref> <ref>PMID:10681512</ref> <ref>PMID:10816575</ref> <ref>PMID:11477071</ref> <ref>PMID:11682626</ref> <ref>PMID:15078875</ref> <ref>PMID:16043358</ref> <ref>PMID:15891768</ref> <ref>PMID:16684779</ref> <ref>PMID:18247370</ref> <ref>PMID:17932106</ref> <ref>PMID:19350539</ref> <ref>PMID:20705611</ref> <ref>PMID:21937726</ref> <ref>PMID:21330404</ref> <ref>PMID:22083956</ref>
+
[https://www.uniprot.org/uniprot/ESR1_HUMAN ESR1_HUMAN] Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Isoform 3 can bind to ERE and inhibit isoform 1.<ref>PMID:7651415</ref> <ref>PMID:10970861</ref> <ref>PMID:9328340</ref> <ref>PMID:10681512</ref> <ref>PMID:10816575</ref> <ref>PMID:11477071</ref> <ref>PMID:11682626</ref> <ref>PMID:15078875</ref> <ref>PMID:16043358</ref> <ref>PMID:15891768</ref> <ref>PMID:16684779</ref> <ref>PMID:18247370</ref> <ref>PMID:17932106</ref> <ref>PMID:19350539</ref> <ref>PMID:20705611</ref> <ref>PMID:21937726</ref> <ref>PMID:21330404</ref> <ref>PMID:22083956</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pcg ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1pcg ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
The interaction between nuclear receptors and coactivators provides an arena for testing whether protein-protein interactions may be inhibited by small molecule drug candidates. We provide evidence that a short cyclic peptide, containing a copy of the LXXLL nuclear receptor box pentapeptide, binds tightly and selectively to estrogen receptor alpha. Furthermore, as shown by x-ray analysis, the disulfide-bridged nonapeptide, nonhelical in aqueous solutions, is able to adopt a quasihelical conformer while binding to the groove created by ligand attachment to estrogen receptor alpha. An i, i+3 linked analog, H-Lys-cyclo(d-Cys-Ile-Leu-Cys)-Arg-Leu-Leu-Gln-NH2 (peptidomimetic estrogen receptor modulator 1), binds with a Ki of 25 nM, significantly better than an i, i+4 bridged cyclic amide, as predicted by molecular modeling design criteria. The induction of helical character, effective binding, and receptor selectivity exhibited by this peptide analog provide strong support for this strategy. The stabilization of minimalist surface motifs may prove useful for the control of other macromolecular assemblies, especially when an amphiphilic helix is crucial for the strong binding interaction between two proteins.
 
- 
-
Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions.,Leduc AM, Trent JO, Wittliff JL, Bramlett KS, Briggs SL, Chirgadze NY, Wang Y, Burris TP, Spatola AF Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11273-8. Epub 2003 Sep 17. PMID:13679575<ref>PMID:13679575</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1pcg" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
Line 36: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Bramlett, K S]]
+
[[Category: Bramlett KS]]
-
[[Category: Briggs, S L]]
+
[[Category: Briggs SL]]
-
[[Category: Burris, T P]]
+
[[Category: Burris TP]]
-
[[Category: Chirgadze, N Y]]
+
[[Category: Chirgadze NY]]
-
[[Category: Leduc, A M]]
+
[[Category: Leduc AM]]
-
[[Category: Spatola, A F]]
+
[[Category: Spatola AF]]
-
[[Category: Trent, J O]]
+
[[Category: Trent JO]]
-
[[Category: Wang, Y]]
+
[[Category: Wang Y]]
-
[[Category: Wittliff, J L]]
+
[[Category: Wittliff JL]]
-
[[Category: Co-activator binding site]]
+
-
[[Category: Transcription-inhibitor complex]]
+

Current revision

Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions

PDB ID 1pcg

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools