|
|
Line 3: |
Line 3: |
| <StructureSection load='3iln' size='340' side='right'caption='[[3iln]], [[Resolution|resolution]] 1.95Å' scene=''> | | <StructureSection load='3iln' size='340' side='right'caption='[[3iln]], [[Resolution|resolution]] 1.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3iln]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_43812 Atcc 43812]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ILN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ILN FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3iln]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodothermus_marinus Rhodothermus marinus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ILN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ILN FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.95Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lamR ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=29549 ATCC 43812])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3iln FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3iln OCA], [https://pdbe.org/3iln PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3iln RCSB], [https://www.ebi.ac.uk/pdbsum/3iln PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3iln ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3iln FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3iln OCA], [https://pdbe.org/3iln PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3iln RCSB], [https://www.ebi.ac.uk/pdbsum/3iln PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3iln ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/O52754_RHOMR O52754_RHOMR] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 27: |
Line 29: |
| </div> | | </div> |
| <div class="pdbe-citations 3iln" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 3iln" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Laminarase 3D structures|Laminarase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 43812]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Bleicher, L]] | + | [[Category: Rhodothermus marinus]] |
- | [[Category: Golubev, A]] | + | [[Category: Bleicher L]] |
- | [[Category: Nascimento, A S]] | + | [[Category: Golubev A]] |
- | [[Category: Polikarpov, I]] | + | [[Category: Nascimento AS]] |
- | [[Category: Rojas, A L]] | + | [[Category: Polikarpov I]] |
- | [[Category: Family 16 glycosyl hydrolase]]
| + | [[Category: Rojas AL]] |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Jelly row]]
| + | |
| Structural highlights
Function
O52754_RHOMR
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 A resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting beta-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge-charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolases.
Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations.,Bleicher L, Prates ET, Gomes TC, Silveira RL, Nascimento AS, Rojas AL, Golubev A, Martinez L, Skaf MS, Polikarpov I J Phys Chem B. 2011 Jun 23;115(24):7940-9. doi: 10.1021/jp200330z. Epub 2011 May , 27. PMID:21619042[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bleicher L, Prates ET, Gomes TC, Silveira RL, Nascimento AS, Rojas AL, Golubev A, Martinez L, Skaf MS, Polikarpov I. Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations. J Phys Chem B. 2011 Jun 23;115(24):7940-9. doi: 10.1021/jp200330z. Epub 2011 May , 27. PMID:21619042 doi:http://dx.doi.org/10.1021/jp200330z
|