|
|
| Line 3: |
Line 3: |
| | <StructureSection load='3e9b' size='340' side='right'caption='[[3e9b]], [[Resolution|resolution]] 2.15Å' scene=''> | | <StructureSection load='3e9b' size='340' side='right'caption='[[3e9b]], [[Resolution|resolution]] 2.15Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[3e9b]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3E9B OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3E9B FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3e9b]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3E9B OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3E9B FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=S2C:S-2-(BORONOETHYL)-L-CYSTEINE'>S2C</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.15Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2e8q|2e8q]], [[3e8z|3e8z]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=S2C:S-2-(BORONOETHYL)-L-CYSTEINE'>S2C</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Arg1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr> | + | |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Arginase Arginase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.3.1 3.5.3.1] </span></td></tr>
| + | |
| | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3e9b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3e9b OCA], [https://pdbe.org/3e9b PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3e9b RCSB], [https://www.ebi.ac.uk/pdbsum/3e9b PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3e9b ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3e9b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3e9b OCA], [https://pdbe.org/3e9b PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3e9b RCSB], [https://www.ebi.ac.uk/pdbsum/3e9b PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3e9b ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/ARGI1_RAT ARGI1_RAT] |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 36: |
Line 36: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Arginase]] | |
| - | [[Category: Buffalo rat]] | |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Christianson, D W]] | + | [[Category: Rattus norvegicus]] |
| - | [[Category: Costanzo, L Di]] | + | [[Category: Christianson DW]] |
| - | [[Category: Shishova, E Y]] | + | [[Category: Di Costanzo L]] |
| - | [[Category: Amino acid recognition]] | + | [[Category: Shishova EY]] |
| - | [[Category: Arginase mutant]]
| + | |
| - | [[Category: Arginine metabolism]]
| + | |
| - | [[Category: Bec]]
| + | |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: Manganese]]
| + | |
| - | [[Category: Metal-binding]]
| + | |
| - | [[Category: Phosphoprotein]]
| + | |
| - | [[Category: T135a]]
| + | |
| - | [[Category: Urea cycle]]
| + | |
| Structural highlights
Function
ARGI1_RAT
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the alpha-amino and alpha-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate alpha-carboxylate and T135, (2) a direct hydrogen bond between the substrate alpha-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate alpha-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased K(M) values but have less pronounced effects on catalytic function as reflected by minimal variations of k(cat). As with substrate K(M) values, inhibitor K(d) values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.
Probing the specificity determinants of amino acid recognition by arginase.,Shishova EY, Di Costanzo L, Emig FA, Ash DE, Christianson DW Biochemistry. 2009 Jan 13;48(1):121-31. PMID:19093830[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Shishova EY, Di Costanzo L, Emig FA, Ash DE, Christianson DW. Probing the specificity determinants of amino acid recognition by arginase. Biochemistry. 2009 Jan 13;48(1):121-31. PMID:19093830 doi:10.1021/bi801911v
|