|
|
Line 3: |
Line 3: |
| <StructureSection load='1il0' size='340' side='right'caption='[[1il0]], [[Resolution|resolution]] 2.20Å' scene=''> | | <StructureSection load='1il0' size='340' side='right'caption='[[1il0]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1il0]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IL0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IL0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1il0]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IL0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IL0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CAA:ACETOACETYL-COENZYME+A'>CAA</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1f0y|1f0y]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CAA:ACETOACETYL-COENZYME+A'>CAA</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HCDH ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/3-hydroxyacyl-CoA_dehydrogenase 3-hydroxyacyl-CoA dehydrogenase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.35 1.1.1.35] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1il0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1il0 OCA], [https://pdbe.org/1il0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1il0 RCSB], [https://www.ebi.ac.uk/pdbsum/1il0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1il0 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1il0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1il0 OCA], [https://pdbe.org/1il0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1il0 RCSB], [https://www.ebi.ac.uk/pdbsum/1il0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1il0 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/HCDH_HUMAN HCDH_HUMAN]] Defects in HADH are the cause of 3-alpha-hydroxyacyl-CoA dehydrogenase deficiency (HADH deficiency) [MIM:[https://omim.org/entry/231530 231530]]. HADH deficiency is a metabolic disorder with various clinical presentations including hypoglycemia, hepatoencephalopathy, myopathy or cardiomyopathy, and in some cases sudden death. Defects in HADH are the cause of familial hyperinsulinemic hypoglycemia type 4 (HHF4) [MIM:[https://omim.org/entry/609975 609975]]; also known as persistent hyperinsulinemic hypoglycemia of infancy (PHHI) or congenital hyperinsulinism. HHF is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels. It causes nesidioblastosis, a diffuse abnormality of the pancreas in which there is extensive, often disorganized formation of new islets. Unless early and aggressive intervention is undertaken, brain damage from recurrent episodes of hypoglycemia may occur. HHF4 should be easily recognizable by analysis of acylcarnitine species and that this disorder responds well to treatment with diazoxide. It provides the first 'experiment of nature' that links impaired fatty acid oxidation to hyperinsulinism and that provides support for the concept that a lipid signaling pathway is implicated in the control of insulin secretion.<ref>PMID:11489939</ref>
| + | [https://www.uniprot.org/uniprot/HCDH_HUMAN HCDH_HUMAN] Defects in HADH are the cause of 3-alpha-hydroxyacyl-CoA dehydrogenase deficiency (HADH deficiency) [MIM:[https://omim.org/entry/231530 231530]. HADH deficiency is a metabolic disorder with various clinical presentations including hypoglycemia, hepatoencephalopathy, myopathy or cardiomyopathy, and in some cases sudden death. Defects in HADH are the cause of familial hyperinsulinemic hypoglycemia type 4 (HHF4) [MIM:[https://omim.org/entry/609975 609975]; also known as persistent hyperinsulinemic hypoglycemia of infancy (PHHI) or congenital hyperinsulinism. HHF is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels. It causes nesidioblastosis, a diffuse abnormality of the pancreas in which there is extensive, often disorganized formation of new islets. Unless early and aggressive intervention is undertaken, brain damage from recurrent episodes of hypoglycemia may occur. HHF4 should be easily recognizable by analysis of acylcarnitine species and that this disorder responds well to treatment with diazoxide. It provides the first 'experiment of nature' that links impaired fatty acid oxidation to hyperinsulinism and that provides support for the concept that a lipid signaling pathway is implicated in the control of insulin secretion.<ref>PMID:11489939</ref> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/HCDH_HUMAN HCDH_HUMAN]] Plays an essential role in the mitochondrial beta-oxidation of short chain fatty acids. Exerts it highest activity toward 3-hydroxybutyryl-CoA.
| + | [https://www.uniprot.org/uniprot/HCDH_HUMAN HCDH_HUMAN] Plays an essential role in the mitochondrial beta-oxidation of short chain fatty acids. Exerts it highest activity toward 3-hydroxybutyryl-CoA. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 40: |
Line 38: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: 3-hydroxyacyl-CoA dehydrogenase]] | + | [[Category: Homo sapiens]] |
- | [[Category: Human]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Banaszak, L J]] | + | [[Category: Banaszak LJ]] |
- | [[Category: Barycki, J J]] | + | [[Category: Barycki JJ]] |
- | [[Category: Brien, L K.O]] | + | [[Category: O'Brien LK]] |
- | [[Category: Strauss, A W]] | + | [[Category: Strauss AW]] |
- | [[Category: Abortive ternary complex]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
Disease
HCDH_HUMAN Defects in HADH are the cause of 3-alpha-hydroxyacyl-CoA dehydrogenase deficiency (HADH deficiency) [MIM:231530. HADH deficiency is a metabolic disorder with various clinical presentations including hypoglycemia, hepatoencephalopathy, myopathy or cardiomyopathy, and in some cases sudden death. Defects in HADH are the cause of familial hyperinsulinemic hypoglycemia type 4 (HHF4) [MIM:609975; also known as persistent hyperinsulinemic hypoglycemia of infancy (PHHI) or congenital hyperinsulinism. HHF is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels. It causes nesidioblastosis, a diffuse abnormality of the pancreas in which there is extensive, often disorganized formation of new islets. Unless early and aggressive intervention is undertaken, brain damage from recurrent episodes of hypoglycemia may occur. HHF4 should be easily recognizable by analysis of acylcarnitine species and that this disorder responds well to treatment with diazoxide. It provides the first 'experiment of nature' that links impaired fatty acid oxidation to hyperinsulinism and that provides support for the concept that a lipid signaling pathway is implicated in the control of insulin secretion.[1]
Function
HCDH_HUMAN Plays an essential role in the mitochondrial beta-oxidation of short chain fatty acids. Exerts it highest activity toward 3-hydroxybutyryl-CoA.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
l-3-Hydroxyacyl-CoA dehydrogenase (HAD), the penultimate enzyme in the beta-oxidation spiral, reversibly catalyzes the conversion of l-3-hydroxyacyl-CoA to the corresponding 3-ketoacyl-CoA. Similar to other dehydrogenases, HAD contains a general acid/base, His(158), which is within hydrogen bond distance of a carboxylate, Glu(170). To investigate its function in this catalytic dyad, Glu(170) was replaced with glutamine (E170Q), and the mutant enzyme was characterized. Whereas substrate and cofactor binding were unaffected by the mutation, E170Q exhibited diminished catalytic activity. Protonation of the catalytic histidine did not restore wild-type activity, indicating that modulation of the pK(a) of His(158) is not the sole function of Glu(170). The pH profile of charge transfer complex formation, an independent indicator of active site integrity, was unaltered by the amino acid substitution, but the intensity of the charge transfer band was diminished. This observation, coupled with significantly reduced enzymatic stability of the E170Q mutant, implicates Glu(170) in maintenance of active site architecture. Examination of the crystal structure of E170Q in complex with NAD(+) and acetoacetyl-CoA (R = 21.9%, R(free) = 27.6%, 2.2 A) reveals that Gln(170) no longer hydrogen bonds to the side chain of His(158). Instead, the imidazole ring is nearly perpendicular to its placement in the comparable native complex and no longer positioned for efficient catalysis.
Glutamate 170 of human l-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme.,Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ J Biol Chem. 2001 Sep 28;276(39):36718-26. Epub 2001 Jul 12. PMID:11451959[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001 Aug;108(3):457-65. PMID:11489939 doi:10.1172/JCI11294
- ↑ Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ. Glutamate 170 of human l-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme. J Biol Chem. 2001 Sep 28;276(39):36718-26. Epub 2001 Jul 12. PMID:11451959 doi:10.1074/jbc.M104839200
|