|
|
Line 3: |
Line 3: |
| <StructureSection load='1svk' size='340' side='right'caption='[[1svk]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='1svk' size='340' side='right'caption='[[1svk]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1svk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SVK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SVK FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1svk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SVK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SVK FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALF:TETRAFLUOROALUMINATE+ION'>ALF</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1bof|1bof]], [[1gfi|1gfi]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALF:TETRAFLUOROALUMINATE+ION'>ALF</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GNAI1, GNAI-1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Heterotrimeric_G-protein_GTPase Heterotrimeric G-protein GTPase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.5.1 3.6.5.1] </span></td></tr> | + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1svk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1svk OCA], [https://pdbe.org/1svk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1svk RCSB], [https://www.ebi.ac.uk/pdbsum/1svk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1svk ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1svk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1svk OCA], [https://pdbe.org/1svk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1svk RCSB], [https://www.ebi.ac.uk/pdbsum/1svk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1svk ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/GNAI1_RAT GNAI1_RAT]] Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.<ref>PMID:16870394</ref>
| + | [https://www.uniprot.org/uniprot/GNAI1_RAT GNAI1_RAT] Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.<ref>PMID:16870394</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Buffalo rat]] | |
- | [[Category: Heterotrimeric G-protein GTPase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Du, X]] | + | [[Category: Rattus norvegicus]] |
- | [[Category: Li, P]] | + | [[Category: Du X]] |
- | [[Category: Ross, E M]] | + | [[Category: Li P]] |
- | [[Category: Sprang, S R]] | + | [[Category: Ross EM]] |
- | [[Category: Thomas, C J]] | + | [[Category: Sprang SR]] |
- | [[Category: Wang, Y]] | + | [[Category: Thomas CJ]] |
- | [[Category: Active form]]
| + | [[Category: Wang Y]] |
- | [[Category: Gi alpha subunit]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: K180p mutation]]
| + | |
- | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
GNAI1_RAT Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. The inactive GDP-bound form prevents the association of RGS14 with centrosomes and is required for the translocation of RGS14 from the cytoplasm to the plasma membrane. May play a role in cell division.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Heterotrimeric G protein alpha (G alpha) subunits possess intrinsic GTPase activity that leads to functional deactivation with a rate constant of approximately 2 min(-1) at 30 degrees C. GTP hydrolysis causes conformational changes in three regions of G alpha, including Switch I and Switch II. Mutation of G202-->A in Switch II of G alpha(i1) accelerates the rates of both GTP hydrolysis and conformational change, which is measured by the loss of fluorescence from Trp-211 in Switch II. Mutation of K180-->P in Switch I increases the rate of conformational change but decreases the GTPase rate, which causes transient but substantial accumulation of a low-fluorescence G alpha(i1).GTP species. Isothermal titration calorimetric analysis of the binding of (G202A)G alpha(i1) and (K180P)G alpha(i1) to the GTPase-activating protein RGS4 indicates that the G202A mutation stabilizes the pretransition state-like conformation of G alpha(i1) that is mimicked by the complex of G alpha(i1) with GDP and magnesium fluoroaluminate, whereas the K180P mutation destabilizes this state. The crystal structures of (K180P)G alpha(i1) bound to a slowly hydrolyzable GTP analog, and the GDP.magnesium fluoroaluminate complex provide evidence that the Mg(2+) binding site is destabilized and that Switch I is torsionally restrained by the K180P mutation. The data are consistent with a catalytic mechanism for G alpha in which major conformational transitions in Switch I and Switch II are obligate events that precede the bond-breaking step in GTP hydrolysis. In (K180P)G alpha(i1), the two events are decoupled kinetically, whereas in the native protein they are concerted.
Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein alpha-subunit.,Thomas CJ, Du X, Li P, Wang Y, Ross EM, Sprang SR Proc Natl Acad Sci U S A. 2004 May 18;101(20):7560-5. Epub 2004 May 5. PMID:15128951[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Shu FJ, Ramineni S, Amyot W, Hepler JR. Selective interactions between Gi alpha1 and Gi alpha3 and the GoLoco/GPR domain of RGS14 influence its dynamic subcellular localization. Cell Signal. 2007 Jan;19(1):163-76. Epub 2006 Jul 25. PMID:16870394 doi:http://dx.doi.org/10.1016/j.cellsig.2006.06.002
- ↑ Thomas CJ, Du X, Li P, Wang Y, Ross EM, Sprang SR. Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein alpha-subunit. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7560-5. Epub 2004 May 5. PMID:15128951 doi:10.1073/pnas.0304091101
|