1wc2
From Proteopedia
(Difference between revisions)
Line 18: | Line 18: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1wc2 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1wc2 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The enzymatic hydrolysis of barley beta-glucan, konjac glucomannan and carboxymethyl cellulose by a beta-1,4-D-endoglucanase MeCel45A from blue mussel, Mytilus edulis, which belongs to subfamily B of glycoside hydrolase family 45 (GH45), was compared with GH45 members of subfamilies A (Humicola insolens HiCel45A), B (Trichoderma reesei TrCel45A) and C (Phanerochaete chrysosporium PcCel45A). Furthermore, the crystal structure of MeCel45A is reported. Initial rates and hydrolysis yields were determined by reducing sugar assays and product formation was characterized using NMR spectroscopy. The subfamily B and C enzymes exhibited mannanase activity, whereas the subfamily A member was uniquely able to produce monomeric glucose. All enzymes were confirmed to be inverting glycoside hydrolases. MeCel45A appears to be cold adapted by evolution, as it maintained 70% activity on cellohexaose at 4 degrees C relative to 30 degrees C, compared to 35% for TrCel45A. Both enzymes produced cellobiose and cellotetraose from cellohexaose, but TrCel45A additionally produced cellotriose. | ||
+ | |||
+ | Glucomannan and beta-glucan degradation by Mytilus edulis Cel45A: Crystal structure and activity comparison with GH45 subfamily A, B and C.,Okmane L, Nestor G, Jakobsson E, Xu B, Igarashi K, Sandgren M, Kleywegt GJ, Stahlberg J Carbohydr Polym. 2022 Feb 1;277:118771. doi: 10.1016/j.carbpol.2021.118771. Epub , 2021 Oct 21. PMID:34893216<ref>PMID:34893216</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1wc2" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Glucanase 3D structures|Glucanase 3D structures]] | *[[Glucanase 3D structures|Glucanase 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 14:13, 29 December 2021
Beta-1,4-D-endoglucanase Cel45A from blue mussel Mytilus edulis at 1.2A
|