User:Guilherme Gonzalez/Sandbox 1
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Function and Structural highlights == | == Function and Structural highlights == | ||
- | HSH155<sup>HEAT</sup> is a core splicing factor that is associated with the U2 small nuclear ribonucleoproteins complex (U2 snRNA), a component of the spliceosome of ''Saccharomyces cerevisiae''. The HSH155 is a major component to the splicing of the pre-mRNA, this protein binds with the pre-mRNA upstream of the intron branching site no matter the sequence of this RNA, anchoring the U2 snRNA to the pre-mRNA. | + | HSH155<sup>HEAT</sup> is a core splicing factor that is associated with the U2 small nuclear ribonucleoproteins complex (U2 snRNA), a component of the spliceosome of ''Saccharomyces cerevisiae''. The HSH155 is a major component to the splicing of the pre-mRNA, this protein binds with the pre-mRNA upstream of the intron branching site no matter the sequence of this RNA, anchoring the U2 snRNA to the pre-mRNA<ref>DOI 10.1083/jcb.201612018</ref>. |
The HSH155 is composed by a single peptide, the structure of the region closer to the N-terminal is still unresolved but the rest of this protein is composed by a series of alpha helices in tandem, denominated HEAT repeat, this structure is characterized by repetitions of two alpha helices linked by a short loop, forming a solenoid form that resembles the letter “C” <ref>DOI 10.2210/pdb7OQB/pdb</ref>. | The HSH155 is composed by a single peptide, the structure of the region closer to the N-terminal is still unresolved but the rest of this protein is composed by a series of alpha helices in tandem, denominated HEAT repeat, this structure is characterized by repetitions of two alpha helices linked by a short loop, forming a solenoid form that resembles the letter “C” <ref>DOI 10.2210/pdb7OQB/pdb</ref>. |
Revision as of 01:04, 6 December 2021
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Mathew V, Tam AS, Milbury KL, Hofmann AK, Hughes CS, Morin GB, Loewen CJR, Stirling PC. Selective aggregation of the splicing factor Hsh155 suppresses splicing upon genotoxic stress. J Cell Biol. 2017 Dec 4;216(12):4027-4040. doi: 10.1083/jcb.201612018. Epub 2017 , Oct 4. PMID:28978642 doi:http://dx.doi.org/10.1083/jcb.201612018
- ↑ doi: https://dx.doi.org/10.2210/pdb7OQB/pdb
- ↑ Zhang Z, Rigo N, Dybkov O, Fourmann JB, Will CL, Kumar V, Urlaub H, Stark H, Luhrmann R. Structural insights into how Prp5 proofreads the pre-mRNA branch site. Nature. 2021 Aug;596(7871):296-300. doi: 10.1038/s41586-021-03789-5. Epub 2021, Aug 4. PMID:34349264 doi:http://dx.doi.org/10.1038/s41586-021-03789-5
- ↑ Zhan X, Yan C, Zhang X, Lei J, Shi Y. Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Cell Res. 2018 Oct 12. pii: 10.1038/s41422-018-0094-7. doi:, 10.1038/s41422-018-0094-7. PMID:30315277 doi:http://dx.doi.org/10.1038/s41422-018-0094-7
- ↑ Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, Travaglino E, Groves MJ, Godfrey AL, Ambaglio I, Galli A, Da Via MC, Conte S, Tauro S, Keenan N, Hyslop A, Hinton J, Mudie LJ, Wainscoat JS, Futreal PA, Stratton MR, Campbell PJ, Hellstrom-Lindberg E, Cazzola M. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011 Dec 8;118(24):6239-46. doi: 10.1182/blood-2011-09-377275. Epub 2011, Oct 12. PMID:21998214 doi:http://dx.doi.org/10.1182/blood-2011-09-377275