7b4q
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Structure of a cold active HSL family esterase reveals mechanisms of low temperature adaptation and substrate specificity== | ==Structure of a cold active HSL family esterase reveals mechanisms of low temperature adaptation and substrate specificity== | ||
- | <StructureSection load='7b4q' size='340' side='right'caption='[[7b4q]]' scene=''> | + | <StructureSection load='7b4q' size='340' side='right'caption='[[7b4q]], [[Resolution|resolution]] 1.61Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7B4Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7B4Q FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[7b4q]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Sutcliffiella_cohnii_NBRC_15565 Sutcliffiella cohnii NBRC 15565]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7B4Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7B4Q FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7b4q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7b4q OCA], [https://pdbe.org/7b4q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7b4q RCSB], [https://www.ebi.ac.uk/pdbsum/7b4q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7b4q ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.61Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7b4q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7b4q OCA], [https://pdbe.org/7b4q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7b4q RCSB], [https://www.ebi.ac.uk/pdbsum/7b4q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7b4q ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/A0A2K9UV39_9BACI A0A2K9UV39_9BACI] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Here we determined the structure of a cold active family IV esterase (EstN7) cloned from Bacillus cohnii strain N1. EstN7 is a dimer with a classical alpha/beta hydrolase fold. It has an acidic surface that is thought to play a role in cold-adaption by retaining solvation under changed water solvent entropy at lower temperatures. The conformation of the functionally important cap region is significantly different to EstN7's closest relatives, forming a bridge-like structure with reduced helical content providing greater access to the active site through more than one substrate access tunnel. However, dynamics do not appear to play a major role in cold adaption. Molecular dynamics at different temperatures, rigidity analysis, normal mode analysis and geometric simulations of motion confirm the flexibility of the cap region but suggest that the rest of the protein is largely rigid. Rigidity analysis indicates the distribution of hydrophobic tethers is appropriate to colder conditions, where the hydrophobic effect is weaker than in mesophilic conditions due to reduced water entropy. Thus, it is likely that increased substrate accessibility and tolerance to changes in water entropy are important for of EstN7's cold adaptation rather than changes in dynamics. | ||
+ | |||
+ | Structure and in silico simulations of a cold-active esterase reveals its prime cold-adaptation mechanism.,Noby N, Auhim HS, Winter S, Worthy HL, Embaby AM, Saeed H, Hussein A, Pudney CR, Rizkallah PJ, Wells SA, Jones DD Open Biol. 2021 Dec;11(12):210182. doi: 10.1098/rsob.210182. Epub 2021 Dec 1. PMID:34847772<ref>PMID:34847772</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7b4q" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
+ | [[Category: Sutcliffiella cohnii NBRC 15565]] | ||
[[Category: Auhim H]] | [[Category: Auhim H]] | ||
[[Category: Jones DD]] | [[Category: Jones DD]] | ||
[[Category: Noby N]] | [[Category: Noby N]] | ||
[[Category: Rizkallah PJ]] | [[Category: Rizkallah PJ]] |
Current revision
Structure of a cold active HSL family esterase reveals mechanisms of low temperature adaptation and substrate specificity
|