2foz

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:24, 14 February 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='2foz' size='340' side='right'caption='[[2foz]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
<StructureSection load='2foz' size='340' side='right'caption='[[2foz]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[2foz]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FOZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2FOZ FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[2foz]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FOZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2FOZ FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2fp0|2fp0]]</div></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2foz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2foz OCA], [https://pdbe.org/2foz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2foz RCSB], [https://www.ebi.ac.uk/pdbsum/2foz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2foz ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2foz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2foz OCA], [https://pdbe.org/2foz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2foz RCSB], [https://www.ebi.ac.uk/pdbsum/2foz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2foz ProSAT]</span></td></tr>
</table>
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/ADPRS_HUMAN ADPRS_HUMAN] The disease is caused by variants affecting the gene represented in this entry.
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/ARHL2_HUMAN ARHL2_HUMAN]] Poly(ADP-ribose) synthesized after DNA damage is only present transiently and is rapidly degraded by poly(ADP-ribose) glycohydrolase. Poly(ADP-ribose) metabolism may be required for maintenance of the normal function of neuronal cells. Generates ADP-ribose from poly-(ADP-ribose), but does not hydrolyze ADP-ribose-arginine, -cysteine, -diphthamide, or -asparagine bonds. Due to catalytic inactivity of PARG mitochondrial isoforms, ARH3 is the only PAR hydrolyzing enzyme in mitochondria.<ref>PMID:16278211</ref>
+
[https://www.uniprot.org/uniprot/ADPRS_HUMAN ADPRS_HUMAN] ADP-ribose glycohydrolase that preferentially hydrolyzes the scissile alpha-O-linkage attached to the anomeric C1'' position of ADP-ribose and acts on different substrates, such as proteins ADP-ribosylated on serine, free poly(ADP-ribose) and O-acetyl-ADP-D-ribose (PubMed:21498885, PubMed:30045870, PubMed:29907568, PubMed:30401461, PubMed:33186521). Specifically acts as a serine mono-ADP-ribosylhydrolase by mediating the removal of mono-ADP-ribose attached to serine residues on proteins, thereby playing a key role in DNA damage response (PubMed:28650317, PubMed:29234005, PubMed:30045870, PubMed:33186521). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:29480802, PubMed:33186521). Does not hydrolyze ADP-ribosyl-arginine, -cysteine, -diphthamide, or -asparagine bonds (PubMed:16278211). Also able to degrade protein free poly(ADP-ribose), which is synthesized in response to DNA damage: free poly(ADP-ribose) acts as a potent cell death signal and its degradation by ADPRHL2 protects cells from poly(ADP-ribose)-dependent cell death, a process named parthanatos (PubMed:16278211). Also hydrolyzes free poly(ADP-ribose) in mitochondria (PubMed:22433848). Specifically digests O-acetyl-ADP-D-ribose, a product of deacetylation reactions catalyzed by sirtuins (PubMed:17075046, PubMed:21498885). Specifically degrades 1''-O-acetyl-ADP-D-ribose isomer, rather than 2''-O-acetyl-ADP-D-ribose or 3''-O-acetyl-ADP-D-ribose isomers (PubMed:21498885).<ref>PMID:16278211</ref> <ref>PMID:17075046</ref> <ref>PMID:21498885</ref> <ref>PMID:22433848</ref> <ref>PMID:28650317</ref> <ref>PMID:29234005</ref> <ref>PMID:29480802</ref> <ref>PMID:29907568</ref> <ref>PMID:30045870</ref> <ref>PMID:30401461</ref> <ref>PMID:33186521</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2foz ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2foz ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Posttranslational modifications are used by cells from all kingdoms of life to control enzymatic activity and to regulate protein function. For many cellular processes, including DNA repair, spindle function, and apoptosis, reversible mono- and polyADP-ribosylation constitutes a very important regulatory mechanism. Moreover, many pathogenic bacteria secrete toxins which ADP-ribosylate human proteins, causing diseases such as whooping cough, cholera, and diphtheria. Whereas the 3D structures of numerous ADP-ribosylating toxins and related mammalian enzymes have been elucidated, virtually nothing is known about the structure of protein de-ADP-ribosylating enzymes. Here, we report the 3Dstructure of human ADP-ribosylhydrolase 3 (hARH3). The molecular architecture of hARH3 constitutes the archetype of an all-alpha-helical protein fold and provides insights into the reversibility of protein ADP-ribosylation. Two magnesium ions flanked by highly conserved amino acids pinpoint the active-site crevice. Recombinant hARH3 binds free ADP-ribose with micromolar affinity and efficiently de-ADP-ribosylates poly- but not monoADP-ribosylated proteins. Docking experiments indicate a possible binding mode for ADP-ribose polymers and suggest a reaction mechanism. Our results underscore the importance of endogenous ADP-ribosylation cycles and provide a basis for structure-based design of ADP-ribosylhydrolase inhibitors.
 
- 
-
The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation.,Mueller-Dieckmann C, Kernstock S, Lisurek M, von Kries JP, Haag F, Weiss MS, Koch-Nolte F Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15026-31. Epub 2006 Oct 2. PMID:17015823<ref>PMID:17015823</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 2foz" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Koch-Nolte, F]]
+
[[Category: Koch-Nolte F]]
-
[[Category: Mueller-Dieckmann, C]]
+
[[Category: Mueller-Dieckmann C]]
-
[[Category: Weiss, M S]]
+
[[Category: Weiss MS]]
-
[[Category: All alpha-helical]]
+
-
[[Category: Hydrolase]]
+
-
[[Category: Metal binding]]
+

Current revision

human ADP-ribosylhydrolase 3

PDB ID 2foz

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools