|
|
Line 3: |
Line 3: |
| <StructureSection load='3an2' size='340' side='right'caption='[[3an2]], [[Resolution|resolution]] 3.60Å' scene=''> | | <StructureSection load='3an2' size='340' side='right'caption='[[3an2]], [[Resolution|resolution]] 3.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3an2]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AN2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AN2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3an2]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AN2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AN2 FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.6Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CENPA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), H4 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), H2A ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), H2B ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3an2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3an2 OCA], [https://pdbe.org/3an2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3an2 RCSB], [https://www.ebi.ac.uk/pdbsum/3an2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3an2 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3an2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3an2 OCA], [https://pdbe.org/3an2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3an2 RCSB], [https://www.ebi.ac.uk/pdbsum/3an2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3an2 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/H2B1J_HUMAN H2B1J_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> [[https://www.uniprot.org/uniprot/CENPA_HUMAN CENPA_HUMAN]] Histone H3-like variant which exclusively replaces conventional H3 in the nucleosome core of centromeric chromatin at the inner plate of the kinetochore. Required for recruitment and assembly of kinetochore proteins, mitotic progression and chromosome segregation. May serve as an epigenetic mark that propagates centromere identity through replication and cell division. The CENPA-H4 heterotetramer can bind DNA by itself (in vitro).<ref>PMID:20739937</ref> <ref>PMID:21478274</ref> [[https://www.uniprot.org/uniprot/B2R4R0_HUMAN B2R4R0_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.[RuleBase:RU000528][SAAS:SAAS00108761]
| + | [https://www.uniprot.org/uniprot/CENPA_HUMAN CENPA_HUMAN] Histone H3-like variant which exclusively replaces conventional H3 in the nucleosome core of centromeric chromatin at the inner plate of the kinetochore. Required for recruitment and assembly of kinetochore proteins, mitotic progression and chromosome segregation. May serve as an epigenetic mark that propagates centromere identity through replication and cell division. The CENPA-H4 heterotetramer can bind DNA by itself (in vitro).<ref>PMID:20739937</ref> <ref>PMID:21478274</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 27: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Hayashi-Takanaka, Y]] | + | [[Category: Hayashi-Takanaka Y]] |
- | [[Category: Kagawa, W]] | + | [[Category: Kagawa W]] |
- | [[Category: Kimura, H]] | + | [[Category: Kimura H]] |
- | [[Category: Kurumizaka, H]] | + | [[Category: Kurumizaka H]] |
- | [[Category: Osakabe, A]] | + | [[Category: Osakabe A]] |
- | [[Category: Park, S Y]] | + | [[Category: Park S-Y]] |
- | [[Category: Saito, K]] | + | [[Category: Saito K]] |
- | [[Category: Shiga, T]] | + | [[Category: Shiga T]] |
- | [[Category: Tachiwana, H]] | + | [[Category: Tachiwana H]] |
- | [[Category: Dna binding]]
| + | |
- | [[Category: Histone fold]]
| + | |
- | [[Category: Nucleus]]
| + | |
- | [[Category: Structural protein-dna complex]]
| + | |
| Structural highlights
Function
CENPA_HUMAN Histone H3-like variant which exclusively replaces conventional H3 in the nucleosome core of centromeric chromatin at the inner plate of the kinetochore. Required for recruitment and assembly of kinetochore proteins, mitotic progression and chromosome segregation. May serve as an epigenetic mark that propagates centromere identity through replication and cell division. The CENPA-H4 heterotetramer can bind DNA by itself (in vitro).[1] [2]
Publication Abstract from PubMed
In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate alpha-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the alphaN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg 80 and Gly 81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.
Crystal structure of the human centromeric nucleosome containing CENP-A.,Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park SY, Kimura H, Kurumizaka H Nature. 2011 Jul 10. doi: 10.1038/nature10258. PMID:21743476[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Sekulic N, Bassett EA, Rogers DJ, Black BE. The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature. 2010 Aug 25. PMID:20739937 doi:10.1038/nature09323
- ↑ Hu H, Liu Y, Wang M, Fang J, Huang H, Yang N, Li Y, Wang J, Yao X, Shi Y, Li G, Xu RM. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev. 2011 May 1;25(9):901-6. Epub 2011 Apr 8. PMID:21478274 doi:10.1101/gad.2045111
- ↑ Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park SY, Kimura H, Kurumizaka H. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 2011 Jul 10. doi: 10.1038/nature10258. PMID:21743476 doi:10.1038/nature10258
|