Human growth hormone

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 124: Line 124:
Diseases associated with human growth hormone are related to deficiency or overproduction of the hormone.
Diseases associated with human growth hormone are related to deficiency or overproduction of the hormone.
 +
Deficiency in somatostatin can occur in childhood or adulthood. Congenital deficiency is typically associated with an abnormal pituitary gland but can also be part of a larger syndrome or condition1. Acquired deficiency can develop from multiple sources including infection, brain tumors, injury, brain surgery or radiation to the head1.Pituitary tumors which have been treated with surgery or radiation are the typically cause of GH deficiency in adults.
 +
Symptoms of deficiency in children include short stature, slow growth, late onset of puberty, increased fat around the waist, and delayed tooth development1. Pituitary dwarfism can result from untreated deficiency in children. In adults the symptoms include decreased strength and muscle mass, weight gain, anxiety and can increased total cholesterol and triglyceride levels.
 +
The Turner syndrome is classified as a type of dwarfism affecting girls. It is a chromosomal disorder due to a partial or complete absence of an X chromosome.
-
Deficiency in somatostatin can occur in childhood or adulthood. Congenital deficiency is typically associated with an abnormal pituitary gland but can also be part of a larger syndrome or condition1. Acquired deficiency can develop from multiple sources including infection, brain tumors, injury, brain surgery or radiation to the head1. There are cases in which no direct cause can be identified. Pituitary tumors which have been treated with surgery or radiation are the typically cause of GH deficiency in adults.
+
The general treatment for dwarfism is HgH injections. The sooner this treatment is started, the more effective it will be. These injections are applied anywhere from several times a week to once a day.
-
Symptoms of deficiency in children include short stature, slow growth, late onset of puberty, increased fat around the waist, and delayed tooth development1. Pituitary dwarfism can result from untreated deficiency in children. In adults the symptoms include low energy, decreased strength and muscle mass, low stamina, weight gain (especially around the waist), anxiety, depression and thin, dry skin1.
+
Injection of GH has been implicated in the development of Creutzfeldt-Jakob Disease. Several cases of such disease were proven related to subjects being recipient of pituitary derived hGH. This association has only been found in GH isolated from cadavers. Originally isolation of the protein from cadavers was the method of development for replacement therapies. Now recombinant methods of production are the main method for synthesis. There seems to be no association in recombinant DNA-produced GH and Creutzfeldt-Jakob disease2.
-
Deficiency can also cause increased total cholesterol, LDL (low density lipoprotein), apolipoprotein B, and triglyceride levels and can reduce bone density.
+
-
The general treatment for dwarfism is HgH injections. The sooner this treatment is started, the more effective it will be in overcoming the deleterious effects of deficient HgH. These injections are applied anywhere from several times a week to once a day. Further care for people afflicted with HgH deficient dwarfism involves psychological therapy to help deal with the social ramifications of such a short stature (A.D.A.M. Growth hormone).
+
Diseases can also result from levels of GH being too high. The effects of excess GH vary based on age. Gigantism is excess of GH during childhood and Acromegaly is excess of GH during adulthood (after bone growth has stopped). Symptoms of gigantism include delayed puberty, headache, increased sweating, and weakness3. Symptoms of acromegaly vary slightly and include carpal tunnel syndrome, weakness, joint pain, sleep apnea, and unintentional weight loss4.
-
 
+
-
Injection of GH has been implicated in the development of Creutzfeldt-Jakob Disease. This association has only been found in GH isolated from cadavers. Originally isolation of the protein from cadavers was the method of development for replacement therapies. Now recombinant methods of production are the main method for synthesis. There seems to be no association in recombinant DNA-produced GH and Creutzfeldt-Jakob disease2.
+
-
 
+
-
Diseases can also result from levels of GH being too high. The effects of excess GH vary based on age. Gigantism is excess of GH during childhood and Acromegaly is excess of GH during adulthood (after bone growth has stopped). Symptoms of gigantism include delayed puberty, double vision, headache, increased sweating, large hands and feet, and weakness3. Symptoms of acromegaly vary slightly and include body odor, carpal tunnel syndrome, fatigue, weakness, increased sweating, joint pain, large hands and feet, sleep apnea, thickening of skin, widely spaced teeth, and unintentional weight loss4.
+
Excess GH release most often occurs because of a pituitary gland tumor3. It can also be due to Carney complex, McCune-Albright syndrome, multiple endocrine neoplasia type 1, and neurofibromatosis3. Treatment includes medications to decrease hormone release and, in severe cases, removal of the pituitary gland.
Excess GH release most often occurs because of a pituitary gland tumor3. It can also be due to Carney complex, McCune-Albright syndrome, multiple endocrine neoplasia type 1, and neurofibromatosis3. Treatment includes medications to decrease hormone release and, in severe cases, removal of the pituitary gland.
-
Acromegaly, or gigantism, is most commonly treated with surgery. Removing the tumor in the pituitary gland can stop the excess release of growth hormone. This is completely successful in approximately 60 percent of cases. Incomplete success is often attributed to the size of the tumor; large tumors cannot always be completely removed, resulting in continued high levels of hormone release (Freda, 2002)<ref>PMID:9814451</ref>.
+
Acromegaly is most commonly treated with surgery. Removing the tumor in the pituitary gland can stop the excess release of growth hormone. Incomplete success of the surgery is often attributed to the size of the tumor: large tumors cannot always be completely removed, resulting in continued high levels of hormone release (Freda, 2002)<ref>PMID:9814451</ref>.
Surgery is often supplemented, or in some cases replaced, by radiation therapy. Radiation of the pituitary can help reduce levels of hormone release by killing tumor cells, but reduction of release as a result of radiation is a slow process and is not as successful as surgery. For this reason, it is more commonly used in tandem with surgery, rather than alone (Freda, 2002; A.D.A.M. Acromegaly).
Surgery is often supplemented, or in some cases replaced, by radiation therapy. Radiation of the pituitary can help reduce levels of hormone release by killing tumor cells, but reduction of release as a result of radiation is a slow process and is not as successful as surgery. For this reason, it is more commonly used in tandem with surgery, rather than alone (Freda, 2002; A.D.A.M. Acromegaly).

Revision as of 20:31, 18 January 2022

Human growth hormone (PDB entry 1hgu)

Drag the structure with the mouse to rotate

3D structures of human growth hormone

Updated on 18-January-2022

1huw, 1hgu – HGH – human
3hhr, 1hwg, 1kf9 – HGH + HGH receptor
1hwh, 1a22 – HGH (mutant) + HGH receptor
1axi – HGH (mutant) + HGH receptor (mutant)
1bp3 – HGH (mutant) + prolactin receptor

References

  1. Chawla RK, Parks JS, Rudman D. Structural variants of human growth hormone: biochemical, genetic, and clinical aspects. Annu Rev Med. 1983;34:519-47. PMID:6344776 doi:http://dx.doi.org/10.1146/annurev.me.34.020183.002511
  2. Millar DS, Lewis MD, Horan M, Newsway V, Easter TE, Gregory JW, Fryklund L, Norin M, Crowne EC, Davies SJ, Edwards P, Kirk J, Waldron K, Smith PJ, Phillips JA 3rd, Scanlon MF, Krawczak M, Cooper DN, Procter AM. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Hum Mutat. 2003 Apr;21(4):424-40. PMID:12655557 doi:http://dx.doi.org/10.1002/humu.10168
  3. Takahashi Y, Shirono H, Arisaka O, Takahashi K, Yagi T, Koga J, Kaji H, Okimura Y, Abe H, Tanaka T, Chihara K. Biologically inactive growth hormone caused by an amino acid substitution. J Clin Invest. 1997 Sep 1;100(5):1159-65. PMID:9276733 doi:10.1172/JCI119627
  4. Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Structure. 2001 Jun;9(6):513-25. PMID:11435116
  5. Giorgianni F, Beranova-Giorgianni S, Desiderio DM. Identification and characterization of phosphorylated proteins in the human pituitary. Proteomics. 2004 Mar;4(3):587-98. PMID:14997482 doi:http://dx.doi.org/10.1002/pmic.200300584
  6. Baldwin GS, Knesel J, Monckton JM. Phosphorylation of gastrin-17 by epidermal growth factor-stimulated tyrosine kinase. Nature. 1983 Feb 3;301(5899):435-7. PMID:6600511
  7. Andersen O, Haugaard SB, Flyvbjerg A, Andersen UB, Orskov H, Madsbad S, Nielsen JO, Iversen J. Low-dose growth hormone and human immunodeficiency virus-associated lipodystrophy syndrome: a pilot study. Eur J Clin Invest. 2004 Aug;34(8):561-8. PMID:15305891 doi:http://dx.doi.org/10.1111/j.1365-2362.2004.01380.x
  8. Miller TL, Mayo KE. Glucocorticoids regulate pituitary growth hormone-releasing hormone receptor messenger ribonucleic acid expression. Endocrinology. 1997 Jun;138(6):2458-65. PMID:9165036 doi:http://dx.doi.org/10.1210/endo.138.6.5184
  9. Lima L, Arce V, Diaz MJ, Tresguerres JA, Devesa J. Glucocorticoids may inhibit growth hormone release by enhancing beta-adrenergic responsiveness in hypothalamic somatostatin neurons. J Clin Endocrinol Metab. 1993 Feb;76(2):439-44. PMID:8094392 doi:http://dx.doi.org/10.1210/jcem.76.2.8094392
  10. Yakar S, Setser J, Zhao H, Stannard B, Haluzik M, Glatt V, Bouxsein ML, Kopchick JJ, LeRoith D. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J Clin Invest. 2004 Jan;113(1):96-105. PMID:14702113 doi:http://dx.doi.org/10.1172/JCI17763
  11. Freda PU, Post KD, Powell JS, Wardlaw SL. Evaluation of disease status with sensitive measures of growth hormone secretion in 60 postoperative patients with acromegaly. J Clin Endocrinol Metab. 1998 Nov;83(11):3808-16. PMID:9814451 doi:http://dx.doi.org/10.1210/jcem.83.11.5266

See Also

Personal tools