3gae
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='3gae' size='340' side='right'caption='[[3gae]], [[Resolution|resolution]] 1.60Å' scene=''> | <StructureSection load='3gae' size='340' side='right'caption='[[3gae]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[3gae]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[3gae]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3GAE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3GAE FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3gae FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3gae OCA], [https://pdbe.org/3gae PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3gae RCSB], [https://www.ebi.ac.uk/pdbsum/3gae PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3gae ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3gae FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3gae OCA], [https://pdbe.org/3gae PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3gae RCSB], [https://www.ebi.ac.uk/pdbsum/3gae PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3gae ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/DOA1_YEAST DOA1_YEAST] Participates in the regulation of the ubiquitin conjugation pathway involving CDC48 by hindering multiubiquitination of substrates at the CDC48 chaperone. May act by preventing the interaction between CDC48 and the E4 enzyme UFD2, leading to prevent multiubiquitination of substrates and subsequent degradation. Essential for maintaining cellular ubiquitin levels.<ref>PMID:15096053</ref> <ref>PMID:8890162</ref> | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3gae ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3gae ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The yeast AAA-ATPase Cdc48 and the ubiquitin fusion degradation (UFD) proteins play important, evolutionarily conserved roles in ubiquitin dependent protein degradation. The N-terminal domain of Cdc48 interacts with substrate-recruiting cofactors, whereas the C terminus of Cdc48 binds to proteins such as Ufd3 that process substrates. Ufd3 is essential for efficient protein degradation and for maintaining cellular ubiquitin levels. This protein contains an N-terminal WD40 domain, a central ubiquitin-binding domain, and a C-terminal Cdc48-binding PUL domain. The crystal structure of the PUL domain reveals an Armadillo repeat with high structural similarity to importin-alpha, and the Cdc48-binding site could be mapped to the concave surface of the PUL domain by biochemical studies. Alterations of the Cdc48 binding site of Ufd3 by site-directed mutagenesis resulted in a depletion of cellular ubiquitin pools and reduced activity of the ubiquitin fusion degradation pathway. Therefore, our data provide direct evidence that the functions of Ufd3 in ubiquitin homeostasis and protein degradation depend on its interaction with the C terminus of Cdc48. | ||
- | |||
- | An Armadillo motif in Ufd3 interacts with Cdc48 and is involved in ubiquitin homeostasis and protein degradation.,Zhao G, Li G, Schindelin H, Lennarz WJ Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16197-202. Epub 2009 Sep 4. PMID:19805280<ref>PMID:19805280</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 3gae" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: Atcc 18824]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: | + | [[Category: Saccharomyces cerevisiae]] |
- | [[Category: | + | [[Category: Lennarz WJ]] |
- | [[Category: | + | [[Category: Schindelin H]] |
- | [[Category: | + | [[Category: Zhao G]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Crystal Structure of PUL
|