3ils
From Proteopedia
(Difference between revisions)
												
			
			| Line 3: | Line 3: | ||
| <StructureSection load='3ils' size='340' side='right'caption='[[3ils]], [[Resolution|resolution]] 1.70Å' scene=''> | <StructureSection load='3ils' size='340' side='right'caption='[[3ils]], [[Resolution|resolution]] 1.70Å' scene=''> | ||
| == Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>[[3ils]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[3ils]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aspergillus_parasiticus Aspergillus parasiticus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ILS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ILS FirstGlance]. <br> | 
| - | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> | 
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ils FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ils OCA], [https://pdbe.org/3ils PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ils RCSB], [https://www.ebi.ac.uk/pdbsum/3ils PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ils ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ils FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ils OCA], [https://pdbe.org/3ils PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ils RCSB], [https://www.ebi.ac.uk/pdbsum/3ils PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ils ProSAT]</span></td></tr> | ||
| </table> | </table> | ||
| == Function == | == Function == | ||
| - | + | [https://www.uniprot.org/uniprot/AFLC_ASPPU AFLC_ASPPU] Norsolorinic acid synthase; part of the gene cluster that mediates the biosynthesis of aflatoxins, a group of polyketide-derived furanocoumarins, and part of the most toxic and carcinogenic compounds among the known mycotoxins (PubMed:7592391, PubMed:15094053, PubMed:7565588, PubMed:15006741, PubMed:17086560, PubMed:18403714). The four major aflatoxins produced by A.parasiticus are aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) (PubMed:15006741). Within the aflatoxin pathway, the norsolorinic acid synthase aflC combines a hexanoyl starter unit provided to the acyl-carrier protein (ACP) domain by the fungal fatty acid synthase aflA/aflB, and 7 malonyl-CoA extender units to synthesize the precursor norsolorinic acid (NOR) (PubMed:17086560, PubMed:18403714). The biosynthesis of aflatoxins begins with the norsolorinic acid synthase aflC that combines a hexanoyl starter unit produced by the fatty acid synthase aflA/aflB and 7 malonyl-CoA extender units to synthesize the precursor NOR. The second step is the conversion of NOR to averantin (AVN) and requires the norsolorinic acid ketoreductase aflD, which catalyzes the dehydration of norsolorinic acid to form (1'S)-averantin. The norsolorinic acid reductases aflE and aflF may also play a role in the conversion of NOR to AVN. The cytochrome P450 monooxygenase aflG then catalyzes the hydroxylation of AVN to 5'hydroxyaverantin (HAVN). The next step is performed by the 5'-hydroxyaverantin dehydrogenase aflH that transforms HAVN to 5'-oxoaverantin (OAVN) which is further converted to averufin (AVF) by aflK that plays a dual role in the pathway, as a 5'-oxoaverantin cyclase that mediates conversion of 5'-oxoaverantin, as well as a versicolorin B synthase in a later step in the pathway. The averufin oxidase aflI catalyzes the conversion of AVF to versiconal hemiacetal acetate (VHA). VHA is then the substrate for the versiconal hemiacetal acetate esterase aflJ to yield versiconal (VAL). Versicolorin B synthase aflK then converts VAL to versicolorin B (VERB) by closing the bisfuran ring of aflatoxin which is required for DNA-binding, thus giving to aflatoxin its activity as a mutagen. Then, the activity of the versicolorin B desaturase aflL leads to versicolorin A (VERA). A branch point starts from VERB since it can also be converted to dihydrodemethylsterigmatocystin (DMDHST), probably also by aflL, VERA being a precursor for aflatoxins B1 and G1, and DMDHST for aflatoxins B2 and G2. Next, the versicolorin reductase aflM and the cytochrome P450 monooxygenase aflN are involved in conversion of VERA to demethylsterigmatocystin (DMST). AflX and aflY seem also involved in this step, through probable aflX-mediated epoxide ring-opening step following versicolorin A oxidation and aflY-mediated Baeyer-Villiger oxidation required for the formation of the xanthone ring. The methyltransferase aflO then leads to the modification of DMST to sterigmatocystin (ST), and of DMDHST to dihydrosterigmatocystin (DHST). Both ST and DHST are then substrates of the O-methyltransferase aflP to yield O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin (DHOMST), respectively. Finally OMST is converted to aflatoxins B1 and G1, and DHOMST to aflatoxins B2 and G2, via the action of several enzymes including O-methylsterigmatocystin oxidoreductase aflQ, the cytochrome P450 monooxygenase aflU, but also the NADH-dependent flavin oxidoreductase nadA which is specifically required for the synthesis of AFG1 (PubMed:15006741).<ref>PMID:17086560</ref> <ref>PMID:18403714</ref> <ref>PMID:7565588</ref> <ref>PMID:7592391</ref> <ref>PMID:15006741</ref> <ref>PMID:15094053</ref>  | |
| == Evolutionary Conservation == | == Evolutionary Conservation == | ||
| [[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
| Line 19: | Line 19: | ||
| </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3ils ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3ils ConSurf]. | ||
| <div style="clear:both"></div> | <div style="clear:both"></div> | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | Polyketide natural products possess diverse architectures and biological functions and share a subset of biosynthetic steps with fatty acid synthesis. The final transformation catalyzed by both polyketide synthases (PKSs) and fatty acid synthases is most often carried out by a thioesterase (TE). The synthetic versatility of TE domains in fungal nonreducing, iterative PKSs (NR-PKSs) has been shown to extend to Claisen cyclase (CLC) chemistry by catalyzing C-C ring closure reactions as opposed to thioester hydrolysis or O-C/N-C macrocyclization observed in previously reported TE structures. Catalysis of C-C bond formation as a product release mechanism dramatically expands the synthetic potential of PKSs, but how this activity was acquired has remained a mystery. We report the biochemical and structural analyses of the TE/CLC domain in polyketide synthase A, the multidomain PKS central to the biosynthesis of aflatoxin B(1), a potent environmental carcinogen. Mutagenesis experiments confirm the predicted identity of the catalytic triad and its role in catalyzing the final Claisen-type cyclization to the aflatoxin precursor, norsolorinic acid anthrone. The 1.7 A crystal structure displays an alpha/beta-hydrolase fold in the catalytic closed form with a distinct hydrophobic substrate-binding chamber. We propose that a key rotation of the substrate side chain coupled to a protein conformational change from the open to closed form spatially governs substrate positioning and C-C cyclization. The biochemical studies, the 1.7 A crystal structure of the TE/CLC domain, and intermediate modeling afford the first mechanistic insights into this widely distributed C-C bond-forming class of TEs. | ||
| - | |||
| - | Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis.,Korman TP, Crawford JM, Labonte JW, Newman AG, Wong J, Townsend CA, Tsai SC Proc Natl Acad Sci U S A. 2010 Mar 23. PMID:20332208<ref>PMID:20332208</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 3ils" style="background-color:#fffaf0;"></div> | ||
| == References == | == References == | ||
| <references/> | <references/> | ||
| __TOC__ | __TOC__ | ||
| </StructureSection> | </StructureSection> | ||
| - | [[Category:  | + | [[Category: Aspergillus parasiticus]] | 
| [[Category: Large Structures]] | [[Category: Large Structures]] | ||
| - | [[Category: Korman | + | [[Category: Korman TP]] | 
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
Current revision
The Thioesterase Domain from PksA
| 
 | |||||||||||

