User:Nhi Pham/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 11: Line 11:
== Active Site ==
== Active Site ==
-
The <scene name='91/910008/Active_site_1/3'>active site</scene> of this complex is in the soluble domain on the luminal side of the <scene name='91/910008/Stt3a_1/1'>STT3A</scene> subunit. The active pocket consists of the <scene name='91/910008/Dnnt_1/1'>DNNT loop</scene> (residues 543-546) from the external loop 5 (EL5) between TM9 and TM10 of the STT3A packing against the ER-luminal domain of this subunit. This forms a binding groove for lipid-linked oligosaccharide (LLO) donor substrate in the form of dolichol pyrophosphate (DolPP) and the divalent magnesium ion.<ref name="Ramirez"/> The magnesium ion will form hydrogen bonds with the oxygen from each phosphate group of DolPP. The active site also has a <scene name='91/910008/Wwd_1/2'>WWD motif</scene>, consisting of three residues Trp525-Trp526-Asp527, for the recognition of acceptor peptide Asn-X-Thr (N-X-T), where X is any amino acid except for Proline. The residues <scene name='91/910008/Stt3a_1/5'>Glu351 and Asp 49</scene> are also part of the active site and are involved in the catalytic reaction of the OST-A complex.<ref name="Mohanty"/>
+
The <scene name='91/910008/Active_site_1/3'>active site</scene> of this complex is in the soluble domain on the luminal side of the <scene name='91/910008/Stt3a_1/1'>STT3A</scene> subunit. The active pocket consists of the <scene name='91/910008/Dnnt_1/1'>DNNT loop</scene> (residues 543-546) from the external loop 5 (EL5) between TM9 and TM10 of the STT3A packing against the ER-luminal domain of this subunit. This forms a binding groove for lipid-linked oligosaccharide (LLO) donor substrate in the form of dolichol pyrophosphate (DolPP) and the divalent magnesium ion.<ref name="Ramirez"/> The magnesium ion will form hydrogen bonds with the oxygen from each phosphate group of DolPP. The active site also has a <scene name='91/910008/Wwd_1/2'>WWD motif</scene>, consisting of three residues Trp525-Trp526-Asp527, for the recognition of acceptor peptide Asn-X-Thr (N-X-T), where X is any amino acid except for Proline. The residues <scene name='91/910008/Stt3a_1/5'>Glu351 and Asp49</scene> are also part of the active site and are involved in the catalytic reaction of the OST-A complex.<ref name="Mohanty"/>
== Function ==
== Function ==

Revision as of 19:15, 28 April 2022

Human Oligosaccharyltransferase complex A (OST-A)

The structure of the oligosaccharyltransferase complex A (OST-A)

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Bai L, Wang T, Zhao G, Kovach A, Li H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature. 2018 Jan 22. pii: nature25755. doi: 10.1038/nature25755. PMID:29466327 doi:http://dx.doi.org/10.1038/nature25755
  2. Lu H, Fermaintt CS, Cherepanova NA, Gilmore R, Yan N, Lehrman MA. Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9557-9562. doi:, 10.1073/pnas.1806034115. Epub 2018 Sep 4. PMID:30181269 doi:http://dx.doi.org/10.1073/pnas.1806034115
  3. 3.0 3.1 Bai L, Li H. Cryo-EM is uncovering the mechanism of eukaryotic protein N-glycosylation. FEBS J. 2019 May;286(9):1638-1644. doi: 10.1111/febs.14705. Epub 2018 Dec 3. PMID:30450807 doi:http://dx.doi.org/10.1111/febs.14705
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Ramirez AS, Kowal J, Locher KP. Cryo-electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science. 2019 Dec 13;366(6471):1372-1375. doi: 10.1126/science.aaz3505. PMID:31831667 doi:http://dx.doi.org/10.1126/science.aaz3505
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Mohanty S, Chaudhary BP, Zoetewey D. Structural Insight into the Mechanism of N-Linked Glycosylation by Oligosaccharyltransferase. Biomolecules. 2020 Apr 17;10(4). pii: biom10040624. doi: 10.3390/biom10040624. PMID:32316603 doi:http://dx.doi.org/10.3390/biom10040624
  6. Lara P, Ojemalm K, Reithinger J, Holgado A, Maojun Y, Hammed A, Mattle D, Kim H, Nilsson I. Refined topology model of the STT3/Stt3 protein subunit of the oligosaccharyltransferase complex. J Biol Chem. 2017 Jul 7;292(27):11349-11360. doi: 10.1074/jbc.M117.779421. Epub, 2017 May 16. PMID:28512128 doi:http://dx.doi.org/10.1074/jbc.M117.779421
  7. 7.0 7.1 Taguchi Y, Yamasaki T, Ishikawa M, Kawasaki Y, Yukimura R, Mitani M, Hirata K, Kohda D. The structure of an archaeal oligosaccharyltransferase provides insight into the strict exclusion of proline from the N-glycosylation sequon. Commun Biol. 2021 Aug 5;4(1):941. doi: 10.1038/s42003-021-02473-8. PMID:34354228 doi:http://dx.doi.org/10.1038/s42003-021-02473-8
  8. Bryant EM, Millichap JJ, Spinelli E, Calhoun JD, Miller C, Giannelli J, Wolak J, Sanders V, Carvill GL, Charrow J. Oligosaccharyltransferase complex-congenital disorders of glycosylation: A novel congenital disorder of glycosylation. Am J Med Genet A. 2020 Jun;182(6):1460-1465. doi: 10.1002/ajmg.a.61553. Epub 2020, Apr 8. PMID:32267060 doi:http://dx.doi.org/10.1002/ajmg.a.61553
  9. Ding J, Xu J, Deng Q, Ma W, Zhang R, He X, Liu S, Zhang L. Knockdown of Oligosaccharyltransferase Subunit Ribophorin 1 Induces Endoplasmic-Reticulum-Stress-Dependent Cell Apoptosis in Breast Cancer. Front Oncol. 2021 Oct 27;11:722624. doi: 10.3389/fonc.2021.722624. eCollection, 2021. PMID:34778038 doi:http://dx.doi.org/10.3389/fonc.2021.722624
  10. Huang YJ, Zhao H, Huang X, Deng YQ, Li XF, Ye Q, Li RT, Xu YP, Cao TS, Qin CF. Identification of oligosaccharyltransferase as a host target for inhibition of SARS-CoV-2 and its variants. Cell Discov. 2021 Nov 30;7(1):116. doi: 10.1038/s41421-021-00354-2. PMID:34845185 doi:http://dx.doi.org/10.1038/s41421-021-00354-2

Proteopedia Page Contributors and Editors (what is this?)

Nhi Pham

Personal tools