User:Meghan Pemberton/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
Brain-derived neurotrophic factor is a relatively small protein, only 27.48 kDa, made of 119 amino acid residues (Protein Data Bank). The secondary structure of the protein is primarily beta-sheets with only a small number of alpha-helices (Protein Data Bank). The protein is a non-covalently linked heterodimer and has close structural homology to nerve growth factor (NGF) proteins (Binder & Scharfman, 2004). BDNF contains a cysteine knot motif, indicating its importance in neurogenesis.
Brain-derived neurotrophic factor is a relatively small protein, only 27.48 kDa, made of 119 amino acid residues (Protein Data Bank). The secondary structure of the protein is primarily beta-sheets with only a small number of alpha-helices (Protein Data Bank). The protein is a non-covalently linked heterodimer and has close structural homology to nerve growth factor (NGF) proteins (Binder & Scharfman, 2004). BDNF contains a cysteine knot motif, indicating its importance in neurogenesis.
There are a few single-nucleotide polymorphisms (SNPs) of BDNF. The most commonly studied one is Val66Met and is exclusive to humans. This point mutation occurs at position 196 (or amino acid residue 66) and mutates a guanine to adenine. Upon transcription, this mutation causes an amino acid switch of valine to methionine. This polymorphism plays a role in destabilizing the mRNA transcript, leading to premature degradation (Baj et al., 2013). The protein that is able to be translated is not trafficked or secreted sufficiently. It can potentially alter protein-protein interactions, binding affinities, localisation, or conformational stability of the protein (Nociti, 2020). Those with this deficit show a decline in short-term episodic memory along with abnormal activity in the hippocampus (Martinowich, 2007). This mutation is also associated with major depressive disorder (Martinowich, 2007).
There are a few single-nucleotide polymorphisms (SNPs) of BDNF. The most commonly studied one is Val66Met and is exclusive to humans. This point mutation occurs at position 196 (or amino acid residue 66) and mutates a guanine to adenine. Upon transcription, this mutation causes an amino acid switch of valine to methionine. This polymorphism plays a role in destabilizing the mRNA transcript, leading to premature degradation (Baj et al., 2013). The protein that is able to be translated is not trafficked or secreted sufficiently. It can potentially alter protein-protein interactions, binding affinities, localisation, or conformational stability of the protein (Nociti, 2020). Those with this deficit show a decline in short-term episodic memory along with abnormal activity in the hippocampus (Martinowich, 2007). This mutation is also associated with major depressive disorder (Martinowich, 2007).
- 
== Functions ==
== Functions ==
 +
== Structural highlights ==
== Structural highlights ==

Revision as of 19:55, 28 April 2022

Brain-Derived Neurotrophic Factor

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

Proteopedia Page Contributors and Editors (what is this?)

Meghan Pemberton

Personal tools