6zw4
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | == | + | ==c14== |
<StructureSection load='6zw4' size='340' side='right'caption='[[6zw4]], [[Resolution|resolution]] 6.50Å' scene=''> | <StructureSection load='6zw4' size='340' side='right'caption='[[6zw4]], [[Resolution|resolution]] 6.50Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6ZW4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6ZW4 FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6zw4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6zw4 OCA], [https://pdbe.org/6zw4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6zw4 RCSB], [https://www.ebi.ac.uk/pdbsum/6zw4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6zw4 ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 6.5Å</td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6zw4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6zw4 OCA], [https://pdbe.org/6zw4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6zw4 RCSB], [https://www.ebi.ac.uk/pdbsum/6zw4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6zw4 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life. | ||
- | |||
- | Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily.,Liu J, Tassinari M, Souza DP, Naskar S, Noel JK, Bohuszewicz O, Buck M, Williams TA, Baum B, Low HH Cell. 2021 Jul 8;184(14):3660-3673.e18. doi: 10.1016/j.cell.2021.05.041. Epub, 2021 Jun 23. PMID:34166615<ref>PMID:34166615</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 6zw4" style="background-color:#fffaf0;"></div> | ||
- | == References == | ||
- | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | + | [[Category: Liu JW]] | |
- | + | [[Category: Low HH]] | |
- | + | ||
- | + | ||
- | [[Category: Liu | + | |
- | [[Category: Low | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
c14
|