|
|
Line 3: |
Line 3: |
| <StructureSection load='3mwj' size='340' side='right'caption='[[3mwj]], [[Resolution|resolution]] 1.40Å' scene=''> | | <StructureSection load='3mwj' size='340' side='right'caption='[[3mwj]], [[Resolution|resolution]] 1.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3mwj]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thet2 Thet2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MWJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MWJ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3mwj]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB27 Thermus thermophilus HB27]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MWJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MWJ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2gxs|2gxs]], [[2gxq|2gxq]], [[2gxu|2gxu]], [[3mwk|3mwk]], [[3mwl|3mwl]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TT_C1895 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=262724 THET2])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3mwj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mwj OCA], [https://pdbe.org/3mwj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3mwj RCSB], [https://www.ebi.ac.uk/pdbsum/3mwj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3mwj ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3mwj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mwj OCA], [https://pdbe.org/3mwj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3mwj RCSB], [https://www.ebi.ac.uk/pdbsum/3mwj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3mwj ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q72GF3_THET2 Q72GF3_THET2] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Thet2]] | + | [[Category: Thermus thermophilus HB27]] |
- | [[Category: Klostermeier, D]] | + | [[Category: Klostermeier D]] |
- | [[Category: Rudolph, M G]] | + | [[Category: Rudolph MG]] |
- | [[Category: Atpase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Ribosome biogenesis]]
| + | |
- | [[Category: Rna helicase]]
| + | |
- | [[Category: Thermophilic]]
| + | |
| Structural highlights
Function
Q72GF3_THET2
Publication Abstract from PubMed
Abstract DEAD-box proteins disrupt or remodel RNA and protein/RNA complexes at the expense of ATP. The catalytic core is composed of two flexibly connected RecA-like domains. The N-terminal domain contains most of the motifs involved in nucleotide binding and serves as a minimalistic model for helicase/nucleotide interactions. A single conserved glutamine in the so-called Q-motif has been suggested as a conformational sensor for the nucleotide state. To reprogram the Thermus thermophilus RNA helicase Hera for use of oxo-ATP instead of ATP and to investigate the sensor function of the Q-motif, we analyzed helicase activity of Hera Q28E. Crystal structures of the Hera N-terminal domain Q28E mutant (TthDEAD_Q28E) in apo- and ligand-bound forms show that Q28E does change specificity from adenine to 8-oxoadenine. However, significant structural changes accompany the Q28E mutation, which prevent the P-loop from adopting its catalytically active conformation and explain the lack of helicase activity of Hera_Q28E with either ATP or 8-oxo-ATP as energy sources. 8-Oxo-adenosine, 8-oxo-AMP, and 8-oxo-ADP weakly bind to TthDEAD_Q28E but in non-canonical modes. These results indicate that the Q-motif not only senses the nucleotide state of the helicase but could also stabilize a catalytically competent conformation of the P-loop and other helicase signature motifs.
Changing nucleotide specificity of the DEAD-box helicase Hera abrogates communication between the Q-motif and the P-loop.,Strohmeier J, Hertel I, Diederichsen U, Rudolph MG, Klostermeier D Biol Chem. 2011 Apr;392(4):357-69. PMID:21391900[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Strohmeier J, Hertel I, Diederichsen U, Rudolph MG, Klostermeier D. Changing nucleotide specificity of the DEAD-box helicase Hera abrogates communication between the Q-motif and the P-loop. Biol Chem. 2011 Apr;392(4):357-69. PMID:21391900 doi:10.1515/BC.2011.034
|