|
|
Line 3: |
Line 3: |
| <StructureSection load='3qzt' size='340' side='right'caption='[[3qzt]], [[Resolution|resolution]] 1.50Å' scene=''> | | <StructureSection load='3qzt' size='340' side='right'caption='[[3qzt]], [[Resolution|resolution]] 1.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3qzt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QZT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3QZT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3qzt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QZT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3QZT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3qzs|3qzs]], [[3qzv|3qzv]]</div></td></tr>
| + | |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BPTF, FAC1, FALZ ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3qzt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qzt OCA], [https://pdbe.org/3qzt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3qzt RCSB], [https://www.ebi.ac.uk/pdbsum/3qzt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3qzt ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3qzt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qzt OCA], [https://pdbe.org/3qzt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3qzt RCSB], [https://www.ebi.ac.uk/pdbsum/3qzt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3qzt ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/BPTF_HUMAN BPTF_HUMAN]] Histone-binding component of NURF (nucleosome-remodeling factor), a complex which catalyzes ATP-dependent nucleosome sliding and facilitates transcription of chromatin. Specifically recognizes H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of virtually all active genes. May also regulate transcription through direct binding to DNA or transcription factors.
| + | [https://www.uniprot.org/uniprot/BPTF_HUMAN BPTF_HUMAN] Histone-binding component of NURF (nucleosome-remodeling factor), a complex which catalyzes ATP-dependent nucleosome sliding and facilitates transcription of chromatin. Specifically recognizes H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of virtually all active genes. May also regulate transcription through direct binding to DNA or transcription factors. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Li, H]] | + | [[Category: Xenopus laevis]] |
- | [[Category: Patel, D J]] | + | [[Category: Li H]] |
- | [[Category: Ruthenburg, A J]] | + | [[Category: Patel DJ]] |
- | [[Category: All alpha helix]] | + | [[Category: Ruthenburg AJ]] |
- | [[Category: Histone h4]]
| + | |
- | [[Category: Nuclear]]
| + | |
- | [[Category: Protein-peptide complex]]
| + | |
- | [[Category: Transcription]]
| + | |
- | [[Category: Transcription-nuclear protein complex]]
| + | |
| Structural highlights
Function
BPTF_HUMAN Histone-binding component of NURF (nucleosome-remodeling factor), a complex which catalyzes ATP-dependent nucleosome sliding and facilitates transcription of chromatin. Specifically recognizes H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of virtually all active genes. May also regulate transcription through direct binding to DNA or transcription factors.
Publication Abstract from PubMed
Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.
Recognition of a Mononucleosomal Histone Modification Pattern by BPTF via Multivalent Interactions.,Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD Cell. 2011 May 27;145(5):692-706. Epub 2011 May 19. PMID:21596426[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD. Recognition of a Mononucleosomal Histone Modification Pattern by BPTF via Multivalent Interactions. Cell. 2011 May 27;145(5):692-706. Epub 2011 May 19. PMID:21596426 doi:10.1016/j.cell.2011.03.053
|