|
|
Line 3: |
Line 3: |
| <StructureSection load='4a4w' size='340' side='right'caption='[[4a4w]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='4a4w' size='340' side='right'caption='[[4a4w]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4a4w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4A4W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4A4W FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4a4w]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4A4W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4A4W FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=YFB:AMORFRUTIN+B'>YFB</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2fvj|2fvj]], [[2xkw|2xkw]], [[2vv2|2vv2]], [[1fm9|1fm9]], [[2vv0|2vv0]], [[2vv1|2vv1]], [[2prg|2prg]], [[1knu|1knu]], [[1rdt|1rdt]], [[2vv4|2vv4]], [[3prg|3prg]], [[1i7i|1i7i]], [[1k74|1k74]], [[1fm6|1fm6]], [[1prg|1prg]], [[1zgy|1zgy]], [[2f4b|2f4b]], [[2vst|2vst]], [[2g0h|2g0h]], [[2vsr|2vsr]], [[1wm0|1wm0]], [[4prg|4prg]], [[2g0g|2g0g]], [[1nyx|1nyx]], [[2vv3|2vv3]], [[2yfe|2yfe]], [[4a4v|4a4v]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=YFB:AMORFRUTIN+B'>YFB</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4a4w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4a4w OCA], [https://pdbe.org/4a4w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4a4w RCSB], [https://www.ebi.ac.uk/pdbsum/4a4w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4a4w ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4a4w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4a4w OCA], [https://pdbe.org/4a4w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4a4w RCSB], [https://www.ebi.ac.uk/pdbsum/4a4w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4a4w ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:[https://omim.org/entry/601665 601665]]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.<ref>PMID:9753710</ref> Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:[https://omim.org/entry/604367 604367]]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.<ref>PMID:12453919</ref> <ref>PMID:11788685</ref> Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:[https://omim.org/entry/137800 137800]]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.
| + | [https://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:[https://omim.org/entry/601665 601665]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.<ref>PMID:9753710</ref> Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:[https://omim.org/entry/604367 604367]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.<ref>PMID:12453919</ref> <ref>PMID:11788685</ref> Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:[https://omim.org/entry/137800 137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility. |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.<ref>PMID:9065481</ref> <ref>PMID:16150867</ref> <ref>PMID:20829347</ref>
| + | [https://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.<ref>PMID:9065481</ref> <ref>PMID:16150867</ref> <ref>PMID:20829347</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 28: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Buessow, K]] | + | [[Category: Buessow K]] |
- | [[Category: Groot, J C.de]]
| + | [[Category: Kawamoto K]] |
- | [[Category: Kawamoto, K]] | + | [[Category: Krausze J]] |
- | [[Category: Krausze, J]] | + | [[Category: Sauer S]] |
- | [[Category: Sauer, S]] | + | [[Category: Schroeder FC]] |
- | [[Category: Schroeder, F C]] | + | [[Category: Weidner C]] |
- | [[Category: Weidner, C]] | + | [[Category: De Groot JC]] |
- | [[Category: Agonist]] | + | |
- | [[Category: Diabetes]]
| + | |
- | [[Category: Insulin resistance]]
| + | |
- | [[Category: Receptor]]
| + | |
| Structural highlights
Disease
PPARG_HUMAN Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.
Function
PPARG_HUMAN Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6]
Publication Abstract from PubMed
Amorfrutins are a family of natural products with high affinity to the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor regulating lipid and glucose metabolism. The PPARgamma agonist rosiglitazone increases insulin sensitivity and is effective against type II diabetes but has severe adverse effects including weight gain. Amorfrutins improve insulin sensitivity and dyslipidemia but do not enhance undesired fat storage. They bear potential as therapeutics or prophylactic dietary supplements. We identified amorfrutin B as a novel partial agonist of PPARgamma with a considerably higher affinity than that of previously reported amorfrutins, similar to that of rosiglitazone. Crystal structures reveal the geranyl side chain of amorfrutin B as the cause of its particularly high affinity. Typical for partial agonists, amorfrutins 1, 2, and B bind helix H3 and the beta-sheet of PPARgamma but not helix H12.
Structural characterization of amorfrutins bound to the peroxisome proliferator-activated receptor gamma.,de Groot JC, Weidner C, Krausze J, Kawamoto K, Schroeder FC, Sauer S, Bussow K J Med Chem. 2013 Feb 28;56(4):1535-43. doi: 10.1021/jm3013272. Epub 2013 Feb 6. PMID:23286787[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med. 1998 Oct 1;339(14):953-9. PMID:9753710 doi:10.1056/NEJM199810013391403
- ↑ Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002 Dec;51(12):3586-90. PMID:12453919
- ↑ Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002 Jan;87(1):408-11. PMID:11788685
- ↑ Mukherjee R, Jow L, Croston GE, Paterniti JR Jr. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem. 1997 Mar 21;272(12):8071-6. PMID:9065481
- ↑ Yin Y, Yuan H, Wang C, Pattabiraman N, Rao M, Pestell RG, Glazer RI. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Mol Endocrinol. 2006 Feb;20(2):268-78. Epub 2005 Sep 8. PMID:16150867 doi:10.1210/me.2005-0197
- ↑ Park SH, Choi HJ, Yang H, Do KH, Kim J, Lee DW, Moon Y. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2010 Nov 12;285(46):35330-9. doi: 10.1074/jbc.M110.136259. Epub 2010, Sep 9. PMID:20829347 doi:10.1074/jbc.M110.136259
- ↑ de Groot JC, Weidner C, Krausze J, Kawamoto K, Schroeder FC, Sauer S, Bussow K. Structural characterization of amorfrutins bound to the peroxisome proliferator-activated receptor gamma. J Med Chem. 2013 Feb 28;56(4):1535-43. doi: 10.1021/jm3013272. Epub 2013 Feb 6. PMID:23286787 doi:http://dx.doi.org/10.1021/jm3013272
|