7vus

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (19:43, 29 May 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7vus]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7VUS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7VUS FirstGlance]. <br>
<table><tr><td colspan='2'>[[7vus]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7VUS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7VUS FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3NY:5-NITRO-1H-BENZOTRIAZOLE'>3NY</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3NY:5-NITRO-1H-BENZOTRIAZOLE'>3NY</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7vus FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7vus OCA], [https://pdbe.org/7vus PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7vus RCSB], [https://www.ebi.ac.uk/pdbsum/7vus PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7vus ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7vus FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7vus OCA], [https://pdbe.org/7vus PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7vus RCSB], [https://www.ebi.ac.uk/pdbsum/7vus PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7vus ProSAT]</span></td></tr>
</table>
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:23893133</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins(1-4). Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20(100) combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins(5). Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations(6-9). Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme(10). Machine learning methods have recently showed promise in predicting productive mutations(11), but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
 +
 +
NMR-guided directed evolution.,Bhattacharya S, Margheritis EG, Takahashi K, Kulesha A, D'Souza A, Kim I, Yoon JH, Tame JRH, Volkov AN, Makhlynets OV, Korendovych IV Nature. 2022 Oct;610(7931):389-393. doi: 10.1038/s41586-022-05278-9. Epub 2022 , Oct 5. PMID:36198791<ref>PMID:36198791</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7vus" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Crystal structure of AlleyCat9 with 5-nitro-benzotriazole

PDB ID 7vus

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools