4f0i
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4f0i]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F0I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4F0I FirstGlance]. <br> | <table><tr><td colspan='2'>[[4f0i]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F0I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4F0I FirstGlance]. <br> | ||
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4f0i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f0i OCA], [https://pdbe.org/4f0i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4f0i RCSB], [https://www.ebi.ac.uk/pdbsum/4f0i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4f0i ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.302Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4f0i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f0i OCA], [https://pdbe.org/4f0i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4f0i RCSB], [https://www.ebi.ac.uk/pdbsum/4f0i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4f0i ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
| Line 10: | Line 11: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/NTRK1_HUMAN NTRK1_HUMAN] Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> | [https://www.uniprot.org/uniprot/NTRK1_HUMAN NTRK1_HUMAN] Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | The Trk family of neurotrophin receptors, which includes the three highly homologous proteins TrkA, TrkB and TrkC, is strongly associated with central and peripheral nervous system processes. Trk proteins are also of interest in oncology, since Trk activation has been observed in several cancer types. While Trk kinases are attractive oncology targets, selectivity might be more of an issue than for other kinases due to potential CNS side effects if several Trk kinases are simultaneously targeted. In order to address this issue, we present here the first structures of human TrkA and TrkB kinase domains and three complexes between TrkB and Trk inhibitors. These structures reveal different conformations of the kinase domain and suggest new regions of selectivity among the Trk family. | ||
| - | |||
| - | The Crystal Structures of TrkA and TrkB Suggest Key Regions for Achieving Selective Inhibition.,Bertrand T, Kothe M, Liu J, Dupuy A, Rak A, Berne PF, Davis S, Gladysheva T, Valtre C, Crenne JY, Mathieu M J Mol Biol. 2012 Aug 16. PMID:22902478<ref>PMID:22902478</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 4f0i" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[High affinity nerve growth factor receptor|High affinity nerve growth factor receptor]] | *[[High affinity nerve growth factor receptor|High affinity nerve growth factor receptor]] | ||
| - | *[[Tyrosine kinase receptor|Tyrosine kinase receptor]] | + | *[[Tyrosine kinase receptor 3D structures|Tyrosine kinase receptor 3D structures]] |
== References == | == References == | ||
<references/> | <references/> | ||
Current revision
Crystal structure of apo TrkA
| |||||||||||
