Sandbox Reserved 1737
From Proteopedia
Line 2: | Line 2: | ||
==Structure== | ==Structure== | ||
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''> | <StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''> | ||
- | + | ||
- | + | Primary Structure: ~461 amino acids | |
+ | |||
+ | Secondary Structure: 12 alpha helicies, 12 beta strands | ||
+ | |||
+ | Tertiary Structure: N-Terminal Regulatory Domain, C-Terminal Catalytic Domain | ||
+ | |||
+ | Quaternary Structure: Forms a homodimer | ||
+ | |||
== Function == | == Function == | ||
+ | |||
+ | Glucose binds to hexokinase, which is then attacked by ATP. The terminal phosphate group on the ATP binds to the glucose, creating two products: glucose-6-phosphate, and ADP. Hexokinase serves as a catalyst for this reaction. | ||
== Disease == | == Disease == |
Revision as of 02:11, 28 October 2022
This Sandbox is Reserved from August 30, 2022 through May 31, 2023 for use in the course Biochemistry I taught by Kimberly Lane at the Radford University, Radford, VA, USA. This reservation includes Sandbox Reserved 1730 through Sandbox Reserved 1749. |
To get started:
More help: Help:Editing |
Structure
|
References
1. D. J. Roberts, S. Miyamoto. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291497/ (Accessed 10/21/2022).
2. Anne M. Mulichuk, John E. Wilson, Kaillathe Padmanabhan, Michael Garavito. The structure of mammalian hexokinase-1. https://www.nature.com/articles/nsb0798_555. (Accessed 10/21/2022).
3. Valerie P. Tan, Shigeki Miyamoto. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. https://pubmed.ncbi.nlm.nih.gov/26075878/. (Accessed 10/21/2022).
4. M. Magnani, M. Bianchi, A. Casabianca, V. Stocchi, A. Daniele, F. Altruda, M. Ferrone, L. Silengo. A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates. https://pubmed.ncbi.nlm.nih.gov/1637300/. (Accessed 10/21/2022).
5. A. E. Aleshin, C. Zeng, G. P. Bourenkov, H. D. Bartunik, H. J. Fromm, R. B. Honzatko. The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. https://pubmed.ncbi.nlm.nih.gov/9493266/. (Accessed 10/21/2022).
6. Richard Southworth, Katherine A. B. Davey, Alice Warley, Pamela B. Garlick. A reevaluation of the roles of hexokinase I and II in the heart. https://journals.physiology.org/doi/full/10.1152/ajpheart.00664.2006. (Accessed 10/21/2022)
7. Èric Claeyssen, Jean Rivoal. Isozymes of plant hexokinase: Occurrence, properties and functions. https://www.sciencedirect.com/science/article/abs/pii/S0031942206007606. (Accessed 10/21/2022)