4l23
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4l23]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4L23 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4L23 FirstGlance]. <br> | <table><tr><td colspan='2'>[[4l23]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4L23 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4L23 FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=X6K:3-(4-MORPHOLIN-4-YLPYRIDO[3,2 4,5]FURO[3,2-D]PYRIMIDIN-2-YL)PHENOL'>X6K</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.501Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=X6K:3-(4-MORPHOLIN-4-YLPYRIDO[3,2 4,5]FURO[3,2-D]PYRIMIDIN-2-YL)PHENOL'>X6K</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4l23 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4l23 OCA], [https://pdbe.org/4l23 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4l23 RCSB], [https://www.ebi.ac.uk/pdbsum/4l23 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4l23 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4l23 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4l23 OCA], [https://pdbe.org/4l23 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4l23 RCSB], [https://www.ebi.ac.uk/pdbsum/4l23 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4l23 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/PK3CA_HUMAN PK3CA_HUMAN] Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4-phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation in breast cancer cells through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. Has also serine-protein kinase activity: phosphorylates PIK3R1 (p85alpha regulatory subunit), EIF4EBP1 and HRAS.<ref>PMID:21708979</ref> | [https://www.uniprot.org/uniprot/PK3CA_HUMAN PK3CA_HUMAN] Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4-phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation in breast cancer cells through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. Has also serine-protein kinase activity: phosphorylates PIK3R1 (p85alpha regulatory subunit), EIF4EBP1 and HRAS.<ref>PMID:21708979</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The phosphatidylinositol 3-kinase (PI3K) signaling pathway plays important roles in cell proliferation, growth, and survival. Hyperactivated PI3K is frequently found in a wide variety of human cancers, validating it as a promising target for cancer therapy. We determined the crystal structure of the human PI3Kalpha-PI103 complex to unravel molecular interactions. Based on the structure, substitution at the R1 position of the phenol portion of PI103 was demonstrated to improve binding affinity via forming a new H-bond with Lys802 at the bottom of the ATP catalytic site. Interestingly, the crystal structure of the PI3Kalpha-9d complex revealed that the flexibility of Lys802 can also induce additional space at the catalytic site for further modification. Thus, these crystal structures provide a molecular basis for the strong and specific interactions and demonstrate the important role of Lys802 in the design of novel PI3Kalpha inhibitors. | ||
- | |||
- | Crystal Structures of PI3Kalpha Complexed with PI103 and Its Derivatives: New Directions for Inhibitors Design.,Zhao Y, Zhang X, Chen Y, Lu S, Peng Y, Wang X, Guo C, Zhou A, Zhang J, Luo Y, Shen Q, Ding J, Meng L, Zhang J ACS Med Chem Lett. 2013 Dec 10;5(2):138-42. doi: 10.1021/ml400378e. eCollection, 2014 Feb 13. PMID:24900786<ref>PMID:24900786</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 4l23" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
Crystal Structure of p110alpha complexed with niSH2 of p85alpha and PI-103
|
Categories: Homo sapiens | Large Structures | Chen YY | Huang M | Jiang F | Zhang J | Zhao YL