4mob

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:27, 1 March 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4mob]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4MOB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4MOB FirstGlance]. <br>
<table><tr><td colspan='2'>[[4mob]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4MOB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4MOB FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=COA:COENZYME+A'>COA</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.401&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=COA:COENZYME+A'>COA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4mob FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4mob OCA], [https://pdbe.org/4mob PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4mob RCSB], [https://www.ebi.ac.uk/pdbsum/4mob PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4mob ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4mob FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4mob OCA], [https://pdbe.org/4mob PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4mob RCSB], [https://www.ebi.ac.uk/pdbsum/4mob PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4mob ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/ACO12_HUMAN ACO12_HUMAN] Hydrolyzes acetyl-CoA to acetate and CoA.<ref>PMID:16951743</ref>
[https://www.uniprot.org/uniprot/ACO12_HUMAN ACO12_HUMAN] Hydrolyzes acetyl-CoA to acetate and CoA.<ref>PMID:16951743</ref>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Acetyl-CoA plays a fundamental role in cell signaling and metabolic pathways, with its cellular levels tightly controlled through reciprocal regulation of enzymes that mediate its synthesis and catabolism. ACOT12, the primary acetyl-CoA thioesterase in the liver of human, mouse, and rat, is responsible for cleavage of the thioester bond within acetyl-CoA, producing acetate and coenzyme A for a range of cellular processes. The enzyme is regulated by ADP and ATP, which is believed to be mediated through the ligand-induced oligomerization of the thioesterase domains, whereby ATP induces active dimers and tetramers, whilst apo- and ADP-bound ACOT12 are monomeric and inactive. Here, using a range of structural and biophysical techniques, it is demonstrated that ACOT12 is a trimer rather than a tetramer, and that neither ADP nor ATP exert their regulatory effects by altering the oligomeric status of the enzyme. Rather, the binding site and mechanism of ADP regulation have been determined to occur through two novel regulatory regions, one involving a large loop that links the thioesterase domains (Phe154-Thr178), defined here as RegLoop1, and a second region involving the C-terminus of thioesterase domain 2 (Gln304-Gly326), designated RegLoop2. Mutagenesis confirmed that Arg312 and Arg313 are crucial for this mode of regulation, and novel interactions with the START domain are presented together with insights into domain swapping within eukaryotic thioesterases for substrate recognition. In summary, these experiments provide the first structural insights into the regulation of this enzyme family, revealing an alternate hypothesis likely to be conserved throughout evolution.
 
- 
-
Structural Basis for Regulation of the Human Acetyl-CoA Thioesterase 12 and Interactions with the START Domain.,Swarbrick CM, Roman N, Cowieson N, Patterson EI, Nanson J, Siponen MI, Berglund H, Lehtio L, Forwood JK J Biol Chem. 2014 Jul 7. pii: jbc.M114.589408. PMID:25002576<ref>PMID:25002576</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 4mob" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==

Current revision

Acyl-Coenzyme A thioesterase 12 in complex with ADP

PDB ID 4mob

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools