7tqd
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7tqd]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Enterobacter_cloacae Enterobacter cloacae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7TQD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7TQD FirstGlance]. <br> | <table><tr><td colspan='2'>[[7tqd]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Enterobacter_cloacae Enterobacter cloacae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7TQD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7TQD FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.9Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7tqd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7tqd OCA], [https://pdbe.org/7tqd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7tqd RCSB], [https://www.ebi.ac.uk/pdbsum/7tqd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7tqd ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7tqd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7tqd OCA], [https://pdbe.org/7tqd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7tqd RCSB], [https://www.ebi.ac.uk/pdbsum/7tqd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7tqd ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == | + | <div style="background-color:#fffaf0;"> |
- | + | == Publication Abstract from PubMed == | |
+ | In all organisms, innate immune pathways sense infection and rapidly activate potent immune responses while avoiding inappropriate activation (autoimmunity). In humans, the innate immune receptor cyclic GMP-AMP synthase (cGAS) detects viral infection to produce the nucleotide second messenger cyclic GMP-AMP (cGAMP), which initiates stimulator of interferon genes (STING)-dependent antiviral signalling(1). Bacteria encode evolutionary predecessors of cGAS called cGAS/DncV-like nucleotidyltransferases(2) (CD-NTases), which detect bacteriophage infection and produce diverse nucleotide second messengers(3). How bacterial CD-NTase activation is controlled remains unknown. Here we show that CD-NTase-associated protein 2 (Cap2) primes bacterial CD-NTases for activation through a ubiquitin transferase-like mechanism. A cryo-electron microscopy structure of the Cap2-CD-NTase complex reveals Cap2 as an all-in-one ubiquitin transferase-like protein, with distinct domains resembling eukaryotic E1 and E2 proteins. The structure captures a reactive-intermediate state with the CD-NTase C terminus positioned in the Cap2 E1 active site and conjugated to AMP. Cap2 conjugates the CD-NTase C terminus to a target molecule that primes the CD-NTase for increased cGAMP production. We further demonstrate that a specific endopeptidase, Cap3, balances Cap2 activity by cleaving CD-NTase-target conjugates. Our data demonstrate that bacteria control immune signalling using an ancient, minimized ubiquitin transferase-like system and provide insight into the evolution of the E1 and E2 machinery across domains of life. | ||
+ | |||
+ | An E1-E2 fusion protein primes antiviral immune signalling in bacteria.,Ledvina HE, Ye Q, Gu Y, Sullivan AE, Quan Y, Lau RK, Zhou H, Corbett KD, Whiteley AT Nature. 2023 Apr;616(7956):319-325. doi: 10.1038/s41586-022-05647-4. Epub 2023 , Feb 8. PMID:36755092<ref>PMID:36755092</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7tqd" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
Structure of Enterobacter cloacae Cap2-CdnD02 2:1 complex
|
Categories: Enterobacter cloacae | Large Structures | Corbett KD | Gu Y | Lau RK | Ledvina HE | Quan Y | Whiteley AT | Ye Q | Zhou H