Sandbox Reserved 1733
From Proteopedia
(Difference between revisions)
Line 14: | Line 14: | ||
== Enzyme Mechanism == | == Enzyme Mechanism == | ||
- | Aspartic Acids 96 and 85 play a very important role in the function of bacteriorhodopsin.<ref> Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. ''Annu. Rev. Biophys. Biomol. Struct.'' '''1999''', 28, 367-399.</ref> When substituted into glutamine, less than 10% of normal function will occur.<ref>Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. ''Proc. Natl. Acad. Sci.'' USA. '''1988''', 85 (12), 4148–4152.</ref> If they are substituted or a mutation occurs, normal processes of bacteriorhodopsin will not occur due to the slow photocycle. Aspartic acid 85 is responsible for proton release for the bacteriorhodopsin. Aspartic acid 96 is responsible for the deprotonation and protonation of the Schiff Base.<ref>Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. ''EMBO''. '''1989''', 8 (6), 1657-1663</ref> The Schiff Base is a catalytic ligand that is equidistant between Aspartic acids 85 and 212 and it contains three water molecules. It is a petagonal cluster and protonated, counteracting the negative charge of the Aspartic acids and has one oxygen from each amino acid. <ref>Shibata, M.; Tanimoto, T.; Kandori, H. Water Molecules in the Schiff Base Molecules. ''J. Am. Chem. Soc.'' '''2003''' 125 (44) 13312–13313 | + | Aspartic Acids 96 and 85 play a very important role in the function of bacteriorhodopsin.<ref> Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. ''Annu. Rev. Biophys. Biomol. Struct.'' '''1999''', 28, 367-399.</ref> When substituted into glutamine, less than 10% of normal function will occur.<ref>Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. ''Proc. Natl. Acad. Sci.'' USA. '''1988''', 85 (12), 4148–4152.</ref> If they are substituted or a mutation occurs, normal processes of bacteriorhodopsin will not occur due to the slow photocycle. Aspartic acid 85 is responsible for proton release for the bacteriorhodopsin. Aspartic acid 96 is responsible for the deprotonation and protonation of the Schiff Base.<ref>Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. ''EMBO''. '''1989''', 8 (6), 1657-1663</ref> The Schiff Base is a catalytic ligand that is equidistant between Aspartic acids 85 and 212 and it contains three water molecules. It is a planar petagonal cluster and protonated, counteracting the negative charge of the Aspartic acids, and has one oxygen from each amino acid. Once light is absorbed, the photoisomerization step takes place, causing a conformational change from all-trans to 13-cis. The Schiff base then transfers a proton to Asp85, causing the downstream effect of proton transfer reactions. <ref>Shibata, M.; Tanimoto, T.; Kandori, H. Water Molecules in the Schiff Base Molecules. ''J. Am. Chem. Soc.'' '''2003''' 125 (44) 13312–13313 |
</ref> | </ref> | ||
Revision as of 22:38, 16 April 2023
|
References
- ↑ Khorana, H. G.; Gerber, G. E.; Herlihy, W. C.; Gray, C. H.; Anderegg, R. J.; Nihei, K.; Biemann, K. Amino acid sequence of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 1997, 76 (10), 5046-5050.
- ↑ Luecke, H.; Schobert, B.; Ricther, H. T.; Cartailler, J. P.; Lanyi, J. Structure of Bacteriorhodopsin at 1.55 Å Resolution. JMBI. 1999, 291 (4), 899-911.
- ↑ Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. High resolution x-ray structure of an early intermediate in the bacteriorhodopsin photocycle. RSCB PDB. 1999, 401 (6755), 822-826.
- ↑ Ovchinnikov, Y. A.; Abdulaev, N. G.; Feigina, M. Y.; Kiselev, A. V.; Lobanov, N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. ICHB. 1979, 100 (2), 219-224.
- ↑ Lanyi, J. K.; Varo, G. The photocycles of bacteriorhodopsin. Isr. J. Chem. 1995, 35 (3-4), 365-385.
- ↑ Belrhalo, H.; Nollert, P.; Royant, A.; Menzel, C.; Rosenbusch, J.; Landau, E.; Ebay-Peyroula, E. Protein, Lipid and Water Organization in Bacteriorhodopsin Crystals: A Molecular View of the Purple Membrane at 1.9 Å Resolution. Struc. 1999, 7 (8), 909-917.
- ↑ Ovichinnikov, Y. A.; Rhodopsin and bacteriorhodopsin structure--function relationships. IBCH. USSR 1982, 148 (2), 179-191.
- ↑ Noort, J. Unraveling bacteriorhodopsin. Biophys. J. 2005, 88 (2), 763-764.
- ↑ Stoeckenius, W.; Bogomolni, R. A. Bacteriorhodopsin and related pigments of halobacteria. Ann. Rev. Biochem. 1982, 52, 587-616.
- ↑ Kouyama, T.; Kinosita, K.; Ikegami, A. Structure and Function of Bacteriorhodopsin. Adv. Biophys. 1988, 24, 123–175.
- ↑ Haupts, U.; Tittor, J.; Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 367-399.
- ↑ Mogi, T.; Stern, L. J.; Marti, T.; Chao, B. H.; Khorana, H. G. Aspartic Acid Substitutions Affect Proton Translocation by Bacteriorhodopsin. Proc. Natl. Acad. Sci. USA. 1988, 85 (12), 4148–4152.
- ↑ Butt, H. J.; Fendler, K.; Bamberg, E.; Tittor, J.; Oesterhelt, D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO. 1989, 8 (6), 1657-1663
- ↑ Shibata, M.; Tanimoto, T.; Kandori, H. Water Molecules in the Schiff Base Molecules. J. Am. Chem. Soc. 2003 125 (44) 13312–13313
- ↑ Wong, C. W.; Ko, L. N.; Huang, H. J.; Yang, C. S.; Hsu, S. H. Engineered bacteriorhodopsin may induce lung cancer cell cycle arrest and suppress their proliferation and migration. MDPI. 2021, 26 (23).