Sandbox Reserved 1769

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
Sodium-taurocholate Co-transporting Polypeptide (NTCP) is found within the membrane of [https://en.wikipedia.org/wiki/Hepatocyte hepatocyte], and its primary role is to facilitate the transport of [https://en.wikipedia.org/wiki/Bile_acid bile salts] into hepatocytes from the bloodstream. This is important because 90% of human bile salts are recycled daily, so the function of NTCP is critical in providing bile salts to solubilize fats for digestion. In addition to transporting bile salts into the cytoplasm of hepatocytes, NTCP also serves as a receptor for [https://en.wikipedia.org/wiki/Hepatitis_B Hepatitis B (HBV)] and [https://en.wikipedia.org/wiki/Hepatitis_D Hepatitis D (HDV)] viruses.
Sodium-taurocholate Co-transporting Polypeptide (NTCP) is found within the membrane of [https://en.wikipedia.org/wiki/Hepatocyte hepatocyte], and its primary role is to facilitate the transport of [https://en.wikipedia.org/wiki/Bile_acid bile salts] into hepatocytes from the bloodstream. This is important because 90% of human bile salts are recycled daily, so the function of NTCP is critical in providing bile salts to solubilize fats for digestion. In addition to transporting bile salts into the cytoplasm of hepatocytes, NTCP also serves as a receptor for [https://en.wikipedia.org/wiki/Hepatitis_B Hepatitis B (HBV)] and [https://en.wikipedia.org/wiki/Hepatitis_D Hepatitis D (HDV)] viruses.
 +
<ref name="Park">PMID:35580630</ref>
 +
<ref name="Goutam">PMID:35545671</ref>
 +
<ref name="Liu">PMID:35726088</ref>
 +
<ref name="Asami">PMID:35580629</ref>
 +
<ref name="Qi">PMID:36032196</ref>
== Function ==
== Function ==
Line 13: Line 18:
== Structure ==
== Structure ==
 +
 +
Structures were determined by [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryogenic electron microscopy (Cryo-EM)] of NTCP in complex with antibodies or nanobodies that stabilize both of these conformations. There are nine transmembrane [https://en.wikipedia.org/wiki/Alpha_helix alpha helices] traversing the plasma membrane with the [https://en.wikipedia.org/wiki/N-terminus N-terminus] located on the extracellular side of the plasma membrane and the [https://en.wikipedia.org/wiki/C-terminus C-terminus] located on the intracellular side. The panel domain is formed by transmembrane helices TM1, TM5, and TM6. The core domain is formed by the packing of a helix bundle consisting of TM2, TM3, and TM4 with another helix bundle consisting of TM7, TM8, and TM9. The two helix bundles are related by pseudo two-fold symmetry. Transmembrane helices are connected by short loops as well as extracellular and intracellular alpha helices that lie nearly parallel to the membrane.
=== Proline/Glycine Hinge ===
=== Proline/Glycine Hinge ===
Line 43: Line 50:
=== Student Contributors ===
=== Student Contributors ===
-
Ben Minor
+
*Ben Minor
-
Maggie Samm
+
*Maggie Samm
-
Zac Stanley
+
*Zac Stanley

Revision as of 18:51, 13 March 2023

Sodium-taurocholate Co-transporting Polypeptide

Sodium-taurocholate co-transporting Polypeptide (NTCP) 7PQQ

Drag the structure with the mouse to rotate

References

  1. Park JH, Iwamoto M, Yun JH, Uchikubo-Kamo T, Son D, Jin Z, Yoshida H, Ohki M, Ishimoto N, Mizutani K, Oshima M, Muramatsu M, Wakita T, Shirouzu M, Liu K, Uemura T, Nomura N, Iwata S, Watashi K, Tame JRH, Nishizawa T, Lee W, Park SY. Structural insights into the HBV receptor and bile acid transporter NTCP. Nature. 2022 Jun;606(7916):1027-1031. PMID:35580630 doi:10.1038/s41586-022-04857-0
  2. Goutam K, Ielasi FS, Pardon E, Steyaert J, Reyes N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature. 2022 Jun;606(7916):1015-1020. PMID:35545671 doi:10.1038/s41586-022-04723-z
  3. Liu H, Irobalieva RN, Bang-Sørensen R, Nosol K, Mukherjee S, Agrawal P, Stieger B, Kossiakoff AA, Locher KP. Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver. Cell Res. 2022 Aug;32(8):773-776. PMID:35726088 doi:10.1038/s41422-022-00680-4
  4. Asami J, Kimura KT, Fujita-Fujiharu Y, Ishida H, Zhang Z, Nomura Y, Liu K, Uemura T, Sato Y, Ono M, Yamamoto M, Noda T, Shigematsu H, Drew D, Iwata S, Shimizu T, Nomura N, Ohto U. Structure of the bile acid transporter and HBV receptor NTCP. Nature. 2022 Jun;606(7916):1021-1026. PMID:35580629 doi:10.1038/s41586-022-04845-4
  5. Qi X, Li W. Unlocking the secrets to human NTCP structure. Innovation (Camb). 2022 Aug 1;3(5):100294. PMID:36032196 doi:10.1016/j.xinn.2022.100294

Student Contributors

  • Ben Minor
  • Maggie Samm
  • Zac Stanley
Personal tools