Sandbox Reserved 1769
From Proteopedia
(Difference between revisions)
Line 13: | Line 13: | ||
== Structure == | == Structure == | ||
- | Structures were determined by [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryogenic electron microscopy (Cryo-EM)] of NTCP in complex with antibodies or nanobodies, revealing two key conformations in NTCP's transport mechanism. There are nine | + | Structures were determined by [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy cryogenic electron microscopy (Cryo-EM)] of NTCP in complex with antibodies or nanobodies, revealing two key conformations in NTCP's transport mechanism. There are nine [https://en.wikipedia.org/wiki/Alpha_helix alpha helices] spanning the membrane, with the [https://en.wikipedia.org/wiki/N-terminus N-terminus] located on the extracellular side of the plasma membrane and the [https://en.wikipedia.org/wiki/C-terminus C-terminus] located on the intracellular side. The panel domain is formed by transmembrane helices TM1, TM5, and TM6. The core domain is formed by the packing of a helix bundle consisting of TM2, TM3, and TM4 with another helix bundle consisting of TM7, TM8, and TM9. These two helix bundles are related by pseudo two-fold symmetry. Transmembrane helices are connected by short loops as well as extracellular and intracellular alpha helices that lie nearly parallel to the membrane. |
=== Domains === | === Domains === |
Revision as of 18:41, 20 March 2023
Sodium-taurocholate Co-transporting Polypeptide
|
References
- ↑ Park JH, Iwamoto M, Yun JH, Uchikubo-Kamo T, Son D, Jin Z, Yoshida H, Ohki M, Ishimoto N, Mizutani K, Oshima M, Muramatsu M, Wakita T, Shirouzu M, Liu K, Uemura T, Nomura N, Iwata S, Watashi K, Tame JRH, Nishizawa T, Lee W, Park SY. Structural insights into the HBV receptor and bile acid transporter NTCP. Nature. 2022 Jun;606(7916):1027-1031. PMID:35580630 doi:10.1038/s41586-022-04857-0
- ↑ Goutam K, Ielasi FS, Pardon E, Steyaert J, Reyes N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature. 2022 Jun;606(7916):1015-1020. PMID:35545671 doi:10.1038/s41586-022-04723-z
- ↑ Liu H, Irobalieva RN, Bang-Sørensen R, Nosol K, Mukherjee S, Agrawal P, Stieger B, Kossiakoff AA, Locher KP. Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver. Cell Res. 2022 Aug;32(8):773-776. PMID:35726088 doi:10.1038/s41422-022-00680-4
- ↑ Asami J, Kimura KT, Fujita-Fujiharu Y, Ishida H, Zhang Z, Nomura Y, Liu K, Uemura T, Sato Y, Ono M, Yamamoto M, Noda T, Shigematsu H, Drew D, Iwata S, Shimizu T, Nomura N, Ohto U. Structure of the bile acid transporter and HBV receptor NTCP. Nature. 2022 Jun;606(7916):1021-1026. PMID:35580629 doi:10.1038/s41586-022-04845-4
- ↑ Qi X, Li W. Unlocking the secrets to human NTCP structure. Innovation (Camb). 2022 Aug 1;3(5):100294. PMID:36032196 doi:10.1016/j.xinn.2022.100294
Student Contributors
- Ben Minor
- Maggie Samm
- Zac Stanley