Sandbox Reserved 1768

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 41: Line 41:
=== Mechanism of Bile Salt Uptake ===
=== Mechanism of Bile Salt Uptake ===
-
Bile salts recognize and bind to the <scene name='95/952697/Ntcp_open-pore_state_surface/1'>open-pore state</scene>. After binding, bile salts pass through the amphipathic pore (INSERT BLUE LINK) and NTCP transitions into the <scene name='95/952697/Ntcp_inward_facing_state/1'>inward facing state</scene>. In this conformation, the pore closes off relative to the extracellular side and opens to the cytoplasmic side. Transition to the inward facing state allows release of bile salts and sodium ions. It is not yet known how this transition exactly proceeds.
+
Bile salts recognize and bind to the <scene name='95/952697/Ntcp_open-pore_state_surface/1'>open-pore state</scene>. After binding, bile salts pass through the amphipathic pore (shown below) [[Image:Hydrophobicity pore.jpg|450 px|right|thumb|Hydrophobicity Scale PyMol picture of NTCP. Red represents hydrophobic residues and white represents hydrophilic residues.]] and NTCP transitions into the <scene name='95/952697/Ntcp_inward_facing_state/1'>inward facing state</scene>. In this conformation, the pore closes off relative to the extracellular side and opens to the cytoplasmic side. Transition to the inward facing state allows release of bile salts and sodium ions. It is not yet known how this transition exactly proceeds.
=== Mechanism of HBV/HDV Infection ===
=== Mechanism of HBV/HDV Infection ===

Revision as of 17:33, 27 March 2023

Sodium-taurocholate Co-transporting Polypeptide

Sodium-taurocholate co-transporting Polypeptide (NTCP) 7PQQ

Drag the structure with the mouse to rotate

References

  1. Asami J, Kimura KT, Fujita-Fujiharu Y, Ishida H, Zhang Z, Nomura Y, Liu K, Uemura T, Sato Y, Ono M, Yamamoto M, Noda T, Shigematsu H, Drew D, Iwata S, Shimizu T, Nomura N, Ohto U. Structure of the bile acid transporter and HBV receptor NTCP. Nature. 2022 Jun; 606 (7916):1021-1026. DOI: 10.1038/s41586-022-04845-4.
  2. Goutam K, Ielasi FS, Pardon E, Steyaert J, Reyes N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature. 2022 Jun;606(7916):1015-1020. DOI: 10.1038/s41586-022-04723-z.
  3. Park JH, Iwamoto M, Yun JH, Uchikubo-Kamo T, Son D, Jin Z, Yoshida H, Ohki M, Ishimoto N, Mizutani K, Oshima M, Muramatsu M, Wakita T, Shirouzu M, Liu K, Uemura T, Nomura N, Iwata S, Watashi K, Tame JRH, Nishizawa T, Lee W, Park SY. Structural insights into the HBV receptor and bile acid transporter NTCP. Nature. 2022 Jun;606(7916):1027-1031. DOI: 10.1038/s41586-022-04857-0.
  4. Liu H, Irobalieva RN, Bang-Sørensen R, Nosol K, Mukherjee S, Agrawal P, Stieger B, Kossiakoff AA, Locher KP. Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver. Cell Res. 2022 Aug;32(8):773-776. DOI: 10.1038/s41422-022-00680-4.
  5. Qi X, Li W. Unlocking the secrets to human NTCP structure. Innovation (Camb). 2022 Aug 1;3(5):100294. doi: 10.1016/j.xinn.2022.100294. DOI: 10.1016/j.xinn.2022.100294.
  6. Zhang X, Zhang Q, Peng Q, Zhou J, Liao L, Sun X, Zhang L, Gong T. Hepatitis B virus preS1-derived lipopeptide functionalized liposomes for targeting of hepatic cells. Biomaterials. 2014 Jul;35(23):6130-41. doi: 10.1016/j.biomaterials.2014.04.037. DOI: 10.1016/j.biomaterials.2014.04.037.

Student Contributors

  • Ben Minor
  • Maggie Samm
  • Zac Stanley
Personal tools