Sandbox Reserved 1774

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 47: Line 47:
The thyroid stimulating hormone <scene name='95/952703/Tsh-ecd/4'>binds to the extracellular domain</scene> by complementary shape<ref name="Duan" />. The ECD is curved and compliments the curvature of TSH similar to how a baseball fits into a glove. Several key ionic interactions between the TSH and TSHR also occur in the <scene name='95/952703/Seatbelt/4'>seat belt region of TSH</scene>. The seatbelt region is located in the beta subunit of the TSH. <scene name='95/952703/Tsh-tshr_itxn-3/5'>The first ionic interaction</scene> is Glu118 from TSH and Lys58 from the ECD.<scene name='95/952703/Tsh-tshr_itxn-2/4'>The second interaction</scene> is between Asp111 from the TSH and Lys209 from the ECD. These interactions form salt bridges between the ECD and the TSH which allows for specificity of binding for TSH to TSHR <ref name="Duan" /><ref name="Faust" />.
The thyroid stimulating hormone <scene name='95/952703/Tsh-ecd/4'>binds to the extracellular domain</scene> by complementary shape<ref name="Duan" />. The ECD is curved and compliments the curvature of TSH similar to how a baseball fits into a glove. Several key ionic interactions between the TSH and TSHR also occur in the <scene name='95/952703/Seatbelt/4'>seat belt region of TSH</scene>. The seatbelt region is located in the beta subunit of the TSH. <scene name='95/952703/Tsh-tshr_itxn-3/5'>The first ionic interaction</scene> is Glu118 from TSH and Lys58 from the ECD.<scene name='95/952703/Tsh-tshr_itxn-2/4'>The second interaction</scene> is between Asp111 from the TSH and Lys209 from the ECD. These interactions form salt bridges between the ECD and the TSH which allows for specificity of binding for TSH to TSHR <ref name="Duan" /><ref name="Faust" />.
-
Other key interactions that determine the specificity of binding are <scene name='95/952703/Tsh-tshr_itxn-4/4'>polar and nonpolar interactions</scene> between TSH and helix 1. Helix 1 contains several polar residues that interact with surrounding nonpolar residues like Leu62 and Phe17. Positively charged Arg54 was also seen to interact with Helix 1. These interactions increase the activation potency and help activate the push and pull mechanism of the hinge region <ref name="Duan" /><ref name="Faust" />.
+
Other key interactions that determine the specificity of binding are <scene name='95/952703/Tsh-tshr_itxn-4/4'>polar and nonpolar interactions</scene> between TSH and helix 1. Helix 1 contains several polar residues that interact with surrounding nonpolar residues like Leu62 and Phe17. Positively charged Arg54 was also seen to interact with Helix 1. These interactions increase the activation potency and help activate the rotation of the hinge region <ref name="Duan" /><ref name="Faust" />.
=== Ligand Regulation of Signaling Activation ===
=== Ligand Regulation of Signaling Activation ===

Revision as of 19:01, 15 April 2023

This Sandbox is Reserved from February 27 through August 31, 2023 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1765 through Sandbox Reserved 1795.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Thyroid Stimulating Hormone Receptor (TSHR) with G-protein (7xw5)

Drag the structure with the mouse to rotate
Personal tools