1kka

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:1kka.gif|left|200px]]
+
{{Seed}}
 +
[[Image:1kka.png|left|200px]]
<!--
<!--
Line 9: Line 10:
{{STRUCTURE_1kka| PDB=1kka | SCENE= }}
{{STRUCTURE_1kka| PDB=1kka | SCENE= }}
-
'''Solution Structure of the Unmodified Anticodon Stem-loop from E. coli tRNA(Phe)'''
+
===Solution Structure of the Unmodified Anticodon Stem-loop from E. coli tRNA(Phe)===
-
==Overview==
+
<!--
-
The modification of RNA nucleotide bases, a fundamental process in all cells, alters the chemical and physical properties of RNA molecules and broadly impacts the physiological properties of cells. tRNA molecules are by far the most diverse-modified RNA species within cells, containing as a group &gt;80% of the known 96 chemically unique nucleic acid modifications. The greatest varieties of modifications are located on residue 37 and play a role in ensuring fidelity and efficiency of protein synthesis. The enzyme dimethylallyl (Delta(2)-isopentenyl) diphosphate:tRNA transferase catalyzes the addition of a dimethylallyl group to the exocyclic amine nitrogen (N6) of A(37) in several tRNA species. Using a 17 residue oligoribonucleotide corresponding to the anticodon arm of Escherichia coli tRNA(Phe), we have investigated the structural and dynamic changes introduced by the dimethylallyl group. The unmodified RNA molecule adopts stem-loop conformation composed of seven base-pairs and a compact three nucleotide loop. This conformation is distinctly different from the U-turn motif that characterizes the anticodon arm in the X-ray crystal structure of the fully modified yeast tRNA(Phe). The adoption of the tri-nucleotide loop by the purine-rich unmodified tRNA(Phe) anticodon arm suggests that other anticodon sequences, especially those containing pyrimidine bases, also may favor a tri-loop conformation. Introduction of the dimethylallyl modification increases the mobility of nucleotides of the loop region but does not dramatically alter the RNA conformation. The dimethylallyl modification may enhance ribosome binding through multiple mechanisms including destabilization of the closed anticodon loop and stabilization of the codon-anticodon helix.
+
The line below this paragraph, {{ABSTRACT_PUBMED_12079344}}, adds the Publication Abstract to the page
 +
(as it appears on PubMed at http://www.pubmed.gov), where 12079344 is the PubMed ID number.
 +
-->
 +
{{ABSTRACT_PUBMED_12079344}}
==About this Structure==
==About this Structure==
-
Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KKA OCA].
+
Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KKA OCA].
==Reference==
==Reference==
Line 26: Line 30:
[[Category: Rna stem-loop]]
[[Category: Rna stem-loop]]
[[Category: Trinucleotide loop]]
[[Category: Trinucleotide loop]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 22:50:31 2008''
+
 
 +
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Jul 2 10:27:55 2008''

Revision as of 07:27, 2 July 2008

Template:STRUCTURE 1kka

Solution Structure of the Unmodified Anticodon Stem-loop from E. coli tRNA(Phe)

Template:ABSTRACT PUBMED 12079344

About this Structure

Full experimental information is available from OCA.

Reference

Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe)., Cabello-Villegas J, Winkler ME, Nikonowicz EP, J Mol Biol. 2002 Jun 21;319(5):1015-34. PMID:12079344

Page seeded by OCA on Wed Jul 2 10:27:55 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools