Sandbox Reserved 1803

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 21: Line 21:
== Structural highlights ==
== Structural highlights ==
 +
 +
These secondary structural features are important for stabilizing the overall structure of the LdmS protein and also play a role in protein interactions or ligand binding. For example, alpha helices form amphipathic surfaces that interact with lipid membranes or other proteins, while beta strands form beta sheets that provide structural rigidity and can also participate in hydrogen bonding with ligands.
 +
 +
The tertiary structure of the protein refers to the three-dimensional arrangement of its secondary structural elements as you can see here in the image and is determined by the interactions between amino acid side chains and the protein backbone.
 +
 +
The quaternary structure refers to the arrangement of multiple protein subunits into a larger complex and can play a role in modulating protein function. In this case, the presence of two subunits may enable cooperative binding of ligands or other proteins to the enzyme's active site.
 +
 +
Here is a space-filling view of the protein, which provides information about the three-dimensional arrangement of amino acid side chains and the overall shape of the protein. This can be important for understanding protein function, as certain domains or regions of the protein may be more exposed and accessible to ligands or other proteins. In this example, the cleft between the two subunits represents the active site of the enzyme, which may be important for substrate binding and catalysis. Additionally, the presence of large loops or domains on the surface of the protein may be indicative of regions that play a role in protein-protein interactions or signaling. To be specific two large loop regions in this paper are, the P-loop (Res. 175–186) and an N-terminal loop region, herein referred to as the N-loop (Res. 28–38).
 +
 +
 +
 +

Revision as of 13:36, 27 April 2023

This Sandbox is Reserved from Mar 1 through Jun 1, 2023 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1796 through Sandbox Reserved 1811.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

== LmdS protein and it's ligand functionality

LmdS protein

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools