4y2g
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4y2g]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y2G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4Y2G FirstGlance]. <br> | <table><tr><td colspan='2'>[[4y2g]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y2G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4Y2G FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4y2g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y2g OCA], [https://pdbe.org/4y2g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4y2g RCSB], [https://www.ebi.ac.uk/pdbsum/4y2g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4y2g ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4y2g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y2g OCA], [https://pdbe.org/4y2g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4y2g RCSB], [https://www.ebi.ac.uk/pdbsum/4y2g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4y2g ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/BRCA1_HUMAN BRCA1_HUMAN] E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage. It is unclear whether it also mediates the formation of other types of polyubiquitin chains. The E3 ubiquitin-protein ligase activity is required for its tumor suppressor function. The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Regulates centrosomal microtubule nucleation. Required for normal cell cycle progression from G2 to mitosis. Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle. Involved in transcriptional regulation of P21 in response to DNA damage. Required for FANCD2 targeting to sites of DNA damage. May function as a transcriptional regulator. Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation. Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks. Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8.<ref>PMID:10500182</ref> <ref>PMID:10724175</ref> <ref>PMID:11836499</ref> <ref>PMID:12890688</ref> <ref>PMID:12887909</ref> <ref>PMID:14976165</ref> <ref>PMID:14990569</ref> <ref>PMID:16818604</ref> <ref>PMID:16326698</ref> <ref>PMID:18056443</ref> <ref>PMID:17525340</ref> <ref>PMID:19261748</ref> <ref>PMID:19369211</ref> <ref>PMID:20351172</ref> <ref>PMID:20364141</ref> | [https://www.uniprot.org/uniprot/BRCA1_HUMAN BRCA1_HUMAN] E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage. It is unclear whether it also mediates the formation of other types of polyubiquitin chains. The E3 ubiquitin-protein ligase activity is required for its tumor suppressor function. The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Regulates centrosomal microtubule nucleation. Required for normal cell cycle progression from G2 to mitosis. Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle. Involved in transcriptional regulation of P21 in response to DNA damage. Required for FANCD2 targeting to sites of DNA damage. May function as a transcriptional regulator. Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation. Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks. Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8.<ref>PMID:10500182</ref> <ref>PMID:10724175</ref> <ref>PMID:11836499</ref> <ref>PMID:12890688</ref> <ref>PMID:12887909</ref> <ref>PMID:14976165</ref> <ref>PMID:14990569</ref> <ref>PMID:16818604</ref> <ref>PMID:16326698</ref> <ref>PMID:18056443</ref> <ref>PMID:17525340</ref> <ref>PMID:19261748</ref> <ref>PMID:19369211</ref> <ref>PMID:20351172</ref> <ref>PMID:20364141</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | BRCA1 accumulation at DNA damage sites is an important step for its function in the DNA damage response and in DNA repair. BRCA1-BRCT domains bind to proteins containing the phosphorylated serine-proline-x-phenylalanine (pSPxF) motif including Abraxas, Bach1/FancJ, and CtIP. In this study, we demonstrate that ionizing radiation (IR)-induces ATM-dependent phosphorylation of serine 404 (S404) next to the pSPxF motif. Crystal structures of BRCT/Abraxas show that phosphorylation of S404 is important for extensive interactions through the N-terminal sequence outside the pSPxF motif and leads to formation of a stable dimer. Mutation of S404 leads to deficiency in BRCA1 accumulation at DNA damage sites and cellular sensitivity to IR. In addition, two germline mutations of BRCA1 are found to disrupt the dimer interface and dimer formation. Thus, we demonstrate a mechanism involving IR-induced phosphorylation and dimerization of the BRCT/Abraxas complex for regulating Abraxas-mediated recruitment of BRCA1 in response to IR. | ||
- | |||
- | Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites.,Wu Q, Paul A, Su D, Mehmood S, Foo TK, Ochi T, Bunting EL, Xia B, Robinson CV, Wang B, Blundell TL Mol Cell. 2016 Jan 13. pii: S1097-2765(15)00973-9. doi:, 10.1016/j.molcel.2015.12.017. PMID:26778126<ref>PMID:26778126</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 4y2g" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
Structure of BRCA1 BRCT domains in complex with Abraxas single phosphorylated peptide
|