Sandbox Reserved 1802
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Biological relevance and broader implications == | == Biological relevance and broader implications == | ||
- | Enzymes involved in this pathway are potential targets for the development of new antibiotics via this pathway, and enzymes that convert chorismate are promising targets for | + | Enzymes involved in this pathway are potential targets for the development of new antibiotics via this pathway, and enzymes that convert chorismate are promising targets for. |
== Important amino acids== | == Important amino acids== |
Revision as of 20:01, 26 April 2023
This Sandbox is Reserved from Mar 1 through Jun 1, 2023 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1796 through Sandbox Reserved 1811. |
To get started:
More help: Help:Editing |
Chorismate dehydratase (MqnA)
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Prasad A, Breithaupt C, Nguyen DA, Lilie H, Ziegler J, Stubbs MT. Mechanism of chorismate dehydratase MqnA, the first enzyme of the futalosine pathway, proceeds via substrate-assisted catalysis. J Biol Chem. 2022 Dec;298(12):102601. PMID:36265588 doi:10.1016/j.jbc.2022.102601