Sandbox Reserved 1800
From Proteopedia
(Difference between revisions)
Line 6: | Line 6: | ||
== Function of your protein == | == Function of your protein == | ||
The function of this protein is to catalyze the formation of dipeptide products in gram-positive bacteria. The positioning of the carboxylate substrate next to ATP is dependent on the formation of a salt-bridge interaction, which is facilitated by Arg305. Hence, Arg305 is essential in the recognition of the carboxylate substrate. | The function of this protein is to catalyze the formation of dipeptide products in gram-positive bacteria. The positioning of the carboxylate substrate next to ATP is dependent on the formation of a salt-bridge interaction, which is facilitated by Arg305. Hence, Arg305 is essential in the recognition of the carboxylate substrate. | ||
- | One group of enzymes, called L-amino acid ligases (LALs), which catalyze the formation of dipeptide products in Gram-positive bacteria, have not been investigated in S. aureus until now. The ATP-grasp enzyme SAOUHSC_02373 from S. aureus NCTC 8325 was found to be a novel LAL with high selectivity for L-aspartate and L-methionine substrates, forming an L-aspartyl–L-methionine dipeptide. It was named L-aspartate–L-methionine ligase (LdmS). The mechanism of LdmS was investigated using X-ray crystallography, molecular modeling, and site-directed mutagenesis. LdmS was found to share a similar mechanism to other ATP-grasp enzymes but possesses a unique active site architecture that confers selectivity for | + | One group of enzymes, called L-amino acid ligases (LALs), which catalyze the formation of dipeptide products in Gram-positive bacteria, have not been investigated in S. aureus until now. The ATP-grasp enzyme SAOUHSC_02373 from S. aureus NCTC 8325 was found to be a novel LAL with high selectivity for L-aspartate and L-methionine substrates, forming an L-aspartyl–L-methionine dipeptide. It was named L-aspartate–L-methionine ligase (LdmS). The mechanism of LdmS was investigated using X-ray crystallography, molecular modeling, and site-directed mutagenesis. LdmS was found to share a similar mechanism to other ATP-grasp enzymes but possesses a unique active site architecture that confers selectivity for L-Asp and L-Met substrates. Phylogenetic analysis showed that LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with the control of Met and Cys metabolism, supporting a role for LdmS in Staphylococcal sulfur amino acid metabolism. |
Revision as of 03:23, 28 April 2023
This Sandbox is Reserved from Mar 1 through Jun 1, 2023 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1796 through Sandbox Reserved 1811. |
To get started:
More help: Help:Editing |
A newly found L-amino acid ligase has been associated with sulfur amino acid metabolism in staphylococci.
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644