8bn8

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:23, 6 November 2024) (edit) (undo)
 
Line 12: Line 12:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
Therapies that enhance anti-tumour immunity have altered the natural history of many cancers. Consequently, leveraging non-overlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyltransferase, METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signalling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that whilst METTL3 inhibition is equally efficacious to anti-PD1 therapy, the combination has far greater pre-clinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD1 and METTL3 inhibition target distinct malignant clones and the combination of these therapies overcome clones insensitive to the single agents. These data provide the molecular and pre-clinical rationale for employing METTL3 inhibitors to promote anti-tumour immunity in the clinic.
+
Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109.
-
Inhibition of METTL3 results in a cell-intrinsic interferon response that enhances anti-tumour immunity.,Guirguis AA, Ofir-Rosenfeld Y, Knezevic K, Blackaby W, Hardick D, Chan YC, Motazedian A, Gillespie A, Vassiliadis D, Lam EY, Tran K, Andrews B, Harbour ME, Vasiliauskaite L, Saunders CJ, Tsagkogeorga G, Azevedo A, Obacz J, Pilka ES, Carkill M, MacPherson L, Wainwright EN, Liddicoat B, Blyth BJ, Albertella MR, Rausch O, Dawson MA Cancer Discov. 2023 Aug 7:CD-23-0007. doi: 10.1158/2159-8290.CD-23-0007. PMID:37548590<ref>PMID:37548590</ref>
+
Inhibition of METTL3 Results in a Cell-Intrinsic Interferon Response That Enhances Antitumor Immunity.,Guirguis AA, Ofir-Rosenfeld Y, Knezevic K, Blackaby W, Hardick D, Chan YC, Motazedian A, Gillespie A, Vassiliadis D, Lam EYN, Tran K, Andrews B, Harbour ME, Vasiliauskaite L, Saunders CJ, Tsagkogeorga G, Azevedo A, Obacz J, Pilka ES, Carkill M, MacPherson L, Wainwright EN, Liddicoat B, Blyth BJ, Albertella MR, Rausch O, Dawson MA Cancer Discov. 2023 Oct 5;13(10):2228-2247. doi: 10.1158/2159-8290.CD-23-0007. PMID:37548590<ref>PMID:37548590</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Current revision

METTL3-METTL14 heterodimer bound to the SAM competitive small molecule inhibitor STM3006

PDB ID 8bn8

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools