5k58
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/SLMA_ECOLI SLMA_ECOLI] Required for nucleoid occlusion (NO) phenomenon, which prevents Z-ring formation and cell division over the nucleoid. Acts as a DNA-associated cell division inhibitor that binds simultaneously chromosomal DNA and FtsZ, and disrupts the assembly of FtsZ polymers. SlmA-DNA-binding sequences (SBS) are dispersed on non-Ter regions of the chromosome, preventing FtsZ polymerization at these regions.[HAMAP-Rule:MF_01839]<ref>PMID:15916962</ref> <ref>PMID:21113127</ref> <ref>PMID:21321206</ref> | [https://www.uniprot.org/uniprot/SLMA_ECOLI SLMA_ECOLI] Required for nucleoid occlusion (NO) phenomenon, which prevents Z-ring formation and cell division over the nucleoid. Acts as a DNA-associated cell division inhibitor that binds simultaneously chromosomal DNA and FtsZ, and disrupts the assembly of FtsZ polymers. SlmA-DNA-binding sequences (SBS) are dispersed on non-Ter regions of the chromosome, preventing FtsZ polymerization at these regions.[HAMAP-Rule:MF_01839]<ref>PMID:15916962</ref> <ref>PMID:21113127</ref> <ref>PMID:21321206</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called "nucleoid occlusion" (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator-CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA-DNA-FtsZ CTD regulatory interaction and provide insight into FtsZ-regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA-DNA-FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA-DNA-FtsZ interaction with implications for SlmA's NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins. | ||
- | |||
- | Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ.,Schumacher MA, Zeng W Proc Natl Acad Sci U S A. 2016 May 3;113(18):4988-93. doi:, 10.1073/pnas.1602327113. Epub 2016 Apr 18. PMID:27091999<ref>PMID:27091999</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 5k58" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
Structure of the K. pneumonia SlmA-DNA complex bound to the C-terminal of the cell division protein FtsZ
|