7t1u

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:02, 6 November 2024) (edit) (undo)
 
Line 16: Line 16:
A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to select a Fes-SH2 domain variant (superFes; sFes(1)) with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We performed systematic structure-function analyses of the superbinding mechanisms of sFes(1) and superSrc-SH2 (sSrc(1)), another SH2 superbinder. We grafted the superbinder motifs from sFes(1) and sSrc(1) into 17 additional SH2 domains and confirmed increased binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.
A comprehensive analysis of the phosphoproteome is essential for understanding molecular mechanisms of human diseases. However, current tools used to enrich phosphotyrosine (pTyr) are limited in their applicability and scope. Here, we engineered new superbinder Src-Homology 2 (SH2) domains that enrich diverse sets of pTyr-peptides. We used phage display to select a Fes-SH2 domain variant (superFes; sFes(1)) with high affinity for pTyr and solved its structure bound to a pTyr-peptide. We performed systematic structure-function analyses of the superbinding mechanisms of sFes(1) and superSrc-SH2 (sSrc(1)), another SH2 superbinder. We grafted the superbinder motifs from sFes(1) and sSrc(1) into 17 additional SH2 domains and confirmed increased binding affinity for specific pTyr-peptides. Using mass spectrometry (MS), we demonstrated that SH2 superbinders have distinct specificity profiles and superior capabilities to enrich pTyr-peptides. Finally, using combinations of SH2 superbinders as affinity purification (AP) tools we showed that unique subsets of pTyr-peptides can be enriched with unparalleled depth and coverage.
-
Engineered SH2 Domains for Targeted Phosphoproteomics.,Martyn GD, Veggiani G, Kusebauch U, Morrone SR, Yates BP, Singer AU, Tong J, Manczyk N, Gish G, Sun Z, Kurinov I, Sicheri F, Moran MF, Moritz RL, Sidhu SS ACS Chem Biol. 2022 Jun 17;17(6):1472-1484. doi: 10.1021/acschembio.2c00051. Epub, 2022 May 25. PMID:35613471<ref>PMID:35613471</ref>
+
Engineered SH2 Domains for Targeted Phosphoproteomics.,Martyn GD, Veggiani G, Kusebauch U, Morrone SR, Yates BP, Singer AU, Tong J, Manczyk N, Gish G, Sun Z, Kurinov I, Sicheri F, Moran MF, Moritz RL, Sidhu SS ACS Chem Biol. 2022 Jun 17;17(6):1472-1484. doi: 10.1021/acschembio.2c00051. Epub , 2022 May 25. PMID:35613471<ref>PMID:35613471</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Current revision

Crystal structure of a superbinder Src SH2 domain (sSrcF) in complex with a high affinity phosphopeptide

PDB ID 7t1u

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools