8uxe

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (05:28, 25 September 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/FKB1B_HUMAN FKB1B_HUMAN] Has the potential to contribute to the immunosuppressive and toxic effects of FK506 and rapamycin. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides.
[https://www.uniprot.org/uniprot/FKB1B_HUMAN FKB1B_HUMAN] Has the potential to contribute to the immunosuppressive and toxic effects of FK506 and rapamycin. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Heart failure, the leading cause of mortality and morbidity in the developed world, is characterized by cardiac ryanodine receptor 2 channels that are hyperphosphorylated, oxidized, and depleted of the stabilizing subunit calstabin-2. This results in a diastolic sarcoplasmic reticulum Ca(2+) leak that impairs cardiac contractility and triggers arrhythmias. Genetic mutations in ryanodine receptor 2 can also cause Ca(2+) leak, leading to arrhythmias and sudden cardiac death. Here, we solved the cryogenic electron microscopy structures of ryanodine receptor 2 variants linked either to heart failure or inherited sudden cardiac death. All are in the primed state, part way between closed and open. Binding of Rycal drugs to ryanodine receptor 2 channels reverts the primed state back towards the closed state, decreasing Ca(2+) leak, improving cardiac function, and preventing arrhythmias. We propose a structural-physiological mechanism whereby the ryanodine receptor 2 channel primed state underlies the arrhythmias in heart failure and arrhythmogenic disorders.
 +
 +
Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders.,Miotto MC, Reiken S, Wronska A, Yuan Q, Dridi H, Liu Y, Weninger G, Tchagou C, Marks AR Nat Commun. 2024 Sep 15;15(1):8080. doi: 10.1038/s41467-024-51791-y. PMID:39278969<ref>PMID:39278969</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 8uxe" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Structure of PKA phosphorylated human RyR2-R420Q in the closed state in the presence of ARM210

PDB ID 8uxe

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools