8hsn

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:02, 9 January 2025) (edit) (undo)
 
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8hsn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8hsn OCA], [https://pdbe.org/8hsn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8hsn RCSB], [https://www.ebi.ac.uk/pdbsum/8hsn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8hsn ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8hsn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8hsn OCA], [https://pdbe.org/8hsn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8hsn RCSB], [https://www.ebi.ac.uk/pdbsum/8hsn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8hsn ProSAT]</span></td></tr>
</table>
</table>
-
== Function ==
+
<div style="background-color:#fffaf0;">
-
[https://www.uniprot.org/uniprot/A0A2D3U3Z1_STRC0 A0A2D3U3Z1_STRC0]
+
== Publication Abstract from PubMed ==
 +
Carbohydrate degradation is crucial for living organisms due to their essential functions in providing energy and composing various metabolic pathways. Nevertheless, in the catalytic cycle of polysaccharide degradation, the details of how the substrates bind and how the products release need more case studies. Here, we choose an inulin fructotransferase (SpIFTase) as a model system, which can degrade inulin into functionally difructose anhydride I. At first, the crystal structures of SpIFTase in the absence of carbohydrates and complex with fructosyl-nystose (GF4), difructose anhydride I, and fructose are obtained, giving the substrate trajectory and product path of SpIFTase, which are further supported by steered molecular dynamics simulations (MDSs) along with mutagenesis. Furthermore, structural topology variations at the active centers of inulin fructotransferases are suggested as the structural base for product release, subsequently proven by substitution mutagenesis and MDSs. Therefore, this study provides a case in point for a deep understanding of the catalytic cycle with substrate trajectory and product path.
 +
 
 +
Structural Insights into the Catalytic Cycle of Inulin Fructotransferase: From Substrate Anchoring to Product Releasing.,Cheng M, Hou X, Huang Z, Chen Z, Ni D, Zhang W, Rao Y, Mu W J Agric Food Chem. 2024 Jul 31;72(30):17030-17040. doi: 10.1021/acs.jafc.4c03615. , Epub 2024 Jul 22. PMID:39034843<ref>PMID:39034843</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 8hsn" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Crystal structure of DFA I-forming Inulin Lyase from Streptomyces peucetius subsp. caesius ATCC 27952

PDB ID 8hsn

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools