1sxp

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:34, 14 February 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/GSTB_BPT4 GSTB_BPT4] Catalyzes the transfer of glucose (Glc) from uridine diphosphoglucose (UDP-Glc) to 5-hydroxymethylcytosine (5-HMC) in double-stranded DNA. Is involved in a DNA modification process to protect the phage genome against its own nucleases and the host restriction endonuclease system.
[https://www.uniprot.org/uniprot/GSTB_BPT4 GSTB_BPT4] Catalyzes the transfer of glucose (Glc) from uridine diphosphoglucose (UDP-Glc) to 5-hydroxymethylcytosine (5-HMC) in double-stranded DNA. Is involved in a DNA modification process to protect the phage genome against its own nucleases and the host restriction endonuclease system.
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Beta-glucosyltransferase (BGT) is a DNA-modifying enzyme and a glycosyltransferase. This inverting enzyme transfers glucose from UDP-glucose to the 5-hydroxymethyl cytosine bases of T4 phage DNA. From previous structural analyses we showed that Asp-100 and Asn-70 were, respectively, the catalytic base and the key residue for specific DNA recognition (Lariviere, L., Gueguen-Chaignon, V., and Morera, S. (2003) J. Mol. Biol. 330, 1077-1086). Here, we supply biochemical evidence supporting their essential roles in catalysis. We have also shown previously that BGT uses a base-flipping mechanism to access 5-hydroxymethyl cytosine (Lariviere, L., and Morera, S. (2002) J. Mol. Biol. 324, 483-490). Whether it is an active or a passive process remains unclear, as is the case for all DNA cleaving and modifying enzymes. Here, we report two crystal structures: (i) BGT in complex with a 13-mer DNA containing an A:G mismatch and (ii) BGT in a ternary complex with UDP and an oligonucleotide containing a single central G:C base pair. The binary structure reveals a specific complex with the flipped-out, mismatched adenine exposed to the active site. Unexpectedly, the other structure shows the non-productive binding of an intermediate flipped-out base. Our structural analysis provides clear evidence for a passive process.
 
- 
-
Structural evidence of a passive base-flipping mechanism for beta-glucosyltransferase.,Lariviere L, Morera S J Biol Chem. 2004 Aug 13;279(33):34715-20. Epub 2004 Jun 3. PMID:15178685<ref>PMID:15178685</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1sxp" style="background-color:#fffaf0;"></div>
 
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

BGT in complex with a 13mer DNA containing a central A:G mismatch

PDB ID 1sxp

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools