3or6
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/KCSA_STRLI KCSA_STRLI] Acts as a pH-gated potassium ion channel; changing the cytosolic pH from 7 to 4 opens the channel, although it is not clear if this is the physiological stimulus for channel opening. Monovalent cation preference is K(+) > Rb(+) > NH4(+) >> Na(+) > Li(+).<ref>PMID:7489706</ref> | [https://www.uniprot.org/uniprot/KCSA_STRLI KCSA_STRLI] Acts as a pH-gated potassium ion channel; changing the cytosolic pH from 7 to 4 opens the channel, although it is not clear if this is the physiological stimulus for channel opening. Monovalent cation preference is K(+) > Rb(+) > NH4(+) >> Na(+) > Li(+).<ref>PMID:7489706</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Modal-gating shifts represent an effective regulatory mechanism by which ion channels control the extent and time course of ionic fluxes. Under steady-state conditions, the K(+) channel KcsA shows three distinct gating modes, high-P(o), low-P(o) and a high-frequency flicker mode, each with about an order of magnitude difference in their mean open times. Here we show that in the absence of C-type inactivation, mutations at the pore-helix position Glu71 unmask a series of kinetically distinct modes of gating in a side chain-specific way. These gating modes mirror those seen in wild-type channels and suggest that specific interactions in the side chain network surrounding the selectivity filter, in concert with ion occupancy, alter the relative stability of pre-existing conformational states of the pore. The present results highlight the key role of the selectivity filter in regulating modal gating behavior in K(+) channels. | ||
+ | |||
+ | On the structural basis of modal gating behavior in K(+) channels.,Chakrapani S, Cordero-Morales JF, Jogini V, Pan AC, Cortes DM, Roux B, Perozo E Nat Struct Mol Biol. 2011 Jan;18(1):67-74. Epub 2010 Dec 26. PMID:21186363<ref>PMID:21186363</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 3or6" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
On the structural basis of modal gating behavior in K+channels - E71Q
|