7jl1
From Proteopedia
(Difference between revisions)
Line 11: | Line 11: | ||
[https://www.uniprot.org/uniprot/RIGI_HUMAN RIGI_HUMAN] Singleton-Merten dysplasia. The disease is caused by variants affecting the gene represented in this entry. | [https://www.uniprot.org/uniprot/RIGI_HUMAN RIGI_HUMAN] Singleton-Merten dysplasia. The disease is caused by variants affecting the gene represented in this entry. | ||
== Function == | == Function == | ||
- | [https://www.uniprot.org/uniprot/RIGI_HUMAN RIGI_HUMAN] Innate immune receptor that senses cytoplasmic viral nucleic acids and activates a downstream signaling cascade leading to the production of type I interferons and pro-inflammatory cytokines (PubMed:15208624, PubMed: | + | [https://www.uniprot.org/uniprot/RIGI_HUMAN RIGI_HUMAN] Innate immune receptor that senses cytoplasmic viral nucleic acids and activates a downstream signaling cascade leading to the production of type I interferons and pro-inflammatory cytokines (PubMed:15208624, PubMed:15708988, PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:17190814, PubMed:18636086, PubMed:19122199, PubMed:19211564, PubMed:24366338, PubMed:28469175, PubMed:29117565, PubMed:31006531, PubMed:34935440, PubMed:35263596, PubMed:36793726). Forms a ribonucleoprotein complex with viral RNAs on which it homooligomerizes to form filaments (PubMed:15208624, PubMed:15708988). The homooligomerization allows the recruitment of RNF135 an E3 ubiquitin-protein ligase that activates and amplifies the RIG-I-mediated antiviral signaling in an RNA length-dependent manner through ubiquitination-dependent and -independent mechanisms (PubMed:28469175, PubMed:31006531). Upon activation, associates with mitochondria antiviral signaling protein (MAVS/IPS1) that activates the IKK-related kinases TBK1 and IKBKE which in turn phosphorylate the interferon regulatory factors IRF3 and IRF7, activating transcription of antiviral immunological genes including the IFN-alpha and IFN-beta interferons (PubMed:28469175, PubMed:31006531). Ligands include 5'-triphosphorylated ssRNAs and dsRNAs but also short dsRNAs (<1 kb in length) (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). In addition to the 5'-triphosphate moiety, blunt-end base pairing at the 5'-end of the RNA is very essential (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). Overhangs at the non-triphosphorylated end of the dsRNA RNA have no major impact on its activity (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). A 3'overhang at the 5'triphosphate end decreases and any 5'overhang at the 5' triphosphate end abolishes its activity (PubMed:15208624, PubMed:15708988, PubMed:19576794, PubMed:19609254, PubMed:21742966). Detects both positive and negative strand RNA viruses including members of the families Paramyxoviridae: Human respiratory syncytial virus and measles virus (MeV), Rhabdoviridae: vesicular stomatitis virus (VSV), Orthomyxoviridae: influenza A and B virus, Flaviviridae: Japanese encephalitis virus (JEV), hepatitis C virus (HCV), dengue virus (DENV) and west Nile virus (WNV) (PubMed:21616437, PubMed:21884169). It also detects rotaviruses and reoviruses (PubMed:21616437, PubMed:21884169). Detects and binds to SARS-CoV-2 RNAs which is inhibited by m6A RNA modifications (Ref.70). Also involved in antiviral signaling in response to viruses containing a dsDNA genome such as Epstein-Barr virus (EBV) (PubMed:19631370). Detects dsRNA produced from non-self dsDNA by RNA polymerase III, such as Epstein-Barr virus-encoded RNAs (EBERs). May play important roles in granulocyte production and differentiation, bacterial phagocytosis and in the regulation of cell migration.<ref>PMID:15208624</ref> <ref>PMID:15708988</ref> <ref>PMID:16125763</ref> <ref>PMID:16127453</ref> <ref>PMID:16153868</ref> <ref>PMID:17190814</ref> <ref>PMID:18636086</ref> <ref>PMID:19122199</ref> <ref>PMID:19211564</ref> <ref>PMID:19576794</ref> <ref>PMID:19609254</ref> <ref>PMID:19631370</ref> <ref>PMID:21742966</ref> <ref>PMID:24366338</ref> <ref>PMID:28469175</ref> <ref>PMID:29117565</ref> <ref>PMID:31006531</ref> <ref>PMID:34935440</ref> <ref>PMID:35263596</ref> <ref>PMID:36793726</ref> [REFERENCE:70]<ref>PMID:21616437</ref> <ref>PMID:21884169</ref> |
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution. | ||
+ | |||
+ | Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases.,Kato K, Ahmad S, Zhu Z, Young JM, Mu X, Park S, Malik HS, Hur S Mol Cell. 2020 Dec 16. pii: S1097-2765(20)30889-3. doi:, 10.1016/j.molcel.2020.11.047. PMID:33373584<ref>PMID:33373584</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7jl1" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
Cryo-EM structure of RIG-I:dsRNA in complex with RIPLET PrySpry domain (monomer)
|
Categories: Homo sapiens | Large Structures | Ahmad S | Hur S | Kato K